Interactive Effects of Increased Temperature and pCO 2 Concentration on the Growth of a Brown Algae Ecklonia cava in the Sporophyte and Gametophyte Stages

Q4 Engineering
Ji Chul Oh, O. Yu, H. Choi
{"title":"Interactive Effects of Increased Temperature and pCO 2 Concentration on the Growth of a Brown Algae Ecklonia cava in the Sporophyte and Gametophyte Stages","authors":"Ji Chul Oh, O. Yu, H. Choi","doi":"10.4217/OPR.2015.37.3.201","DOIUrl":null,"url":null,"abstract":"To examine the effects of increased CO₂ concentration and seawater temperature on the photosynthesis and growth of forest forming Ecklonia cava (Laminariales, Phaeophyta), sporophytic discs and gametophytes were cultured under three pCO₂ concentrations (380, 750, 1000 ppm), four temperatures (5, 10, 15, 20℃ for sporophytes; 10, 15, 20, 25℃ for gametophytes), and two irradiance levels (40, 80 μmol photons m ?2 s ?1 ) for 5 days. Photosynthetic parameter values (ETR max , E k , and α) were generally higher as sporophytic discs were grown under low temperature and increased CO₂ concentration at 750 ppm. However, photosynthesis of Ecklonia sporophytes was severely inhibited under a combination of high temperature (20℃) and 1000 ppm CO₂ concentration at the two photon irradiance levels. The growth of gametophytes was maximal at the combination of 380 ppm (present seawater CO₂ concentration) and 25℃. Minimal growth of gametophytes occurred at enriched pCO₂ concentration levels (750, 1000 ppm) and high temperature of 25℃. The present results imply that climate change which is increasing seawater temperature and pCO₂ concentration might diminish Ecklonia cava kelp beds because of a reduction in recruitments caused by the growth inhibition of gametophytes at high pCO₂ concentration. In addition, the effects of increased temperature and pCO₂ concentration were different between generations - revealing an enhancement in the photosynthesis of sporophytes and a reduction in the growth of gametophytes.","PeriodicalId":35665,"journal":{"name":"Ocean and Polar Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean and Polar Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4217/OPR.2015.37.3.201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 10

Abstract

To examine the effects of increased CO₂ concentration and seawater temperature on the photosynthesis and growth of forest forming Ecklonia cava (Laminariales, Phaeophyta), sporophytic discs and gametophytes were cultured under three pCO₂ concentrations (380, 750, 1000 ppm), four temperatures (5, 10, 15, 20℃ for sporophytes; 10, 15, 20, 25℃ for gametophytes), and two irradiance levels (40, 80 μmol photons m ?2 s ?1 ) for 5 days. Photosynthetic parameter values (ETR max , E k , and α) were generally higher as sporophytic discs were grown under low temperature and increased CO₂ concentration at 750 ppm. However, photosynthesis of Ecklonia sporophytes was severely inhibited under a combination of high temperature (20℃) and 1000 ppm CO₂ concentration at the two photon irradiance levels. The growth of gametophytes was maximal at the combination of 380 ppm (present seawater CO₂ concentration) and 25℃. Minimal growth of gametophytes occurred at enriched pCO₂ concentration levels (750, 1000 ppm) and high temperature of 25℃. The present results imply that climate change which is increasing seawater temperature and pCO₂ concentration might diminish Ecklonia cava kelp beds because of a reduction in recruitments caused by the growth inhibition of gametophytes at high pCO₂ concentration. In addition, the effects of increased temperature and pCO₂ concentration were different between generations - revealing an enhancement in the photosynthesis of sporophytes and a reduction in the growth of gametophytes.
温度和co2浓度升高对褐藻孢子体和配子体生长的交互影响
为了研究CO 2浓度和海水温度的升高对形成森林的Ecklonia cava (Laminariales, Phaeophyta)光合作用和生长的影响,在3种CO 2浓度(380、750、1000 ppm)和4种温度(5、10、15、20℃)下培养孢子体盘状体和配子体;10、15、20、25℃(配子体)和40、80 μmol光子m ?2 s ?1两个辐照水平处理5 d。光合参数值(ETR max、E k和α)在低温和750 ppm co2浓度下生长时普遍较高。而高温(20℃)和1000 ppm co2浓度在两个光子辐照水平下的组合处理,则严重抑制了Ecklonia孢子体的光合作用。配子体在380 ppm(当前海水CO₂浓度)和25℃的组合下生长最大。在pco2浓度(750、1000 ppm)和高温25℃条件下,配子体生长最小。结果表明,气候变化导致海水温度升高和co 2浓度升高,可能是由于高co 2浓度下配子体生长受到抑制,导致海带种群数量减少。此外,温度升高和co₂浓度升高的影响在代际之间是不同的,这表明孢子体的光合作用增强,配子体的生长减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean and Polar Research
Ocean and Polar Research Engineering-Ocean Engineering
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信