{"title":"Classifying Unstructured Text Using Structured Training Instances and an Ensemble of Classifiers","authors":"A. Lianos, Yanyan Yang","doi":"10.4236/JILSA.2015.72006","DOIUrl":null,"url":null,"abstract":"Typical supervised classification techniques require training instances similar to the values that need to be classified. This research proposes a methodology that can utilize training instances found in a different format. The benefit of this approach is that it allows the use of traditional classification techniques, without the need to hand-tag training instances if the information exists in other data sources. The proposed approach is presented through a practical classification application. The evaluation results show that the approach is viable, and that the segmentation of classifiers can greatly improve accuracy.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":"07 1","pages":"58-73"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JILSA.2015.72006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Typical supervised classification techniques require training instances similar to the values that need to be classified. This research proposes a methodology that can utilize training instances found in a different format. The benefit of this approach is that it allows the use of traditional classification techniques, without the need to hand-tag training instances if the information exists in other data sources. The proposed approach is presented through a practical classification application. The evaluation results show that the approach is viable, and that the segmentation of classifiers can greatly improve accuracy.