A Neural Network Approach to Predicting Car Tyre Micro-Scale and Macro-Scale Behaviour

Xiaoguang Yang, M. Behroozi, O. Olatunbosun
{"title":"A Neural Network Approach to Predicting Car Tyre Micro-Scale and Macro-Scale Behaviour","authors":"Xiaoguang Yang, M. Behroozi, O. Olatunbosun","doi":"10.4236/JILSA.2014.61002","DOIUrl":null,"url":null,"abstract":"Finite Element (FE) analysis has become the favoured tool in the tyre industry for virtual development of tyres because of the ability to represent the detailed lay-up of the tyre carcass. However, application of FE analysis in tyre design and development is still very time-consuming and expensive. Here, the application of various Artificial Neural Network (ANN) architectures to predicting tyre performance is assessed to select the most effective and efficient architecture, to allow extensive parametric studies to be carried out inexpensively and to optimise tyre design before a much more expensive full FE analysis is used to confirm the predicted performance.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":"6 1","pages":"11-20"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JILSA.2014.61002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Finite Element (FE) analysis has become the favoured tool in the tyre industry for virtual development of tyres because of the ability to represent the detailed lay-up of the tyre carcass. However, application of FE analysis in tyre design and development is still very time-consuming and expensive. Here, the application of various Artificial Neural Network (ANN) architectures to predicting tyre performance is assessed to select the most effective and efficient architecture, to allow extensive parametric studies to be carried out inexpensively and to optimise tyre design before a much more expensive full FE analysis is used to confirm the predicted performance.
汽车轮胎微观和宏观行为预测的神经网络方法
有限元分析由于能够反映轮胎胎体的详细分层结构,已成为轮胎行业进行轮胎虚拟开发的首选工具。然而,在轮胎设计和开发中应用有限元分析仍然是非常耗时和昂贵的。在这里,评估各种人工神经网络(ANN)体系结构在预测轮胎性能方面的应用,以选择最有效和最高效的体系结构,从而允许以低成本进行广泛的参数研究,并在使用更昂贵的完整有限元分析来确认预测性能之前优化轮胎设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
135
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信