{"title":"Curves in low dimensional projective spaces with the lowest ranks","authors":"E. Ballico","doi":"10.4067/s0719-06462020000300379","DOIUrl":null,"url":null,"abstract":"Let X ⊂ P r be an integral and non-degenerate curve. For each q ∈ P r the X -rank r X ( q ) of q is the minimal number of points of X spanning q . A general point of P r has X -rank ⌈ ( r + 1) / 2 ⌉ . For r = 3 (resp. r = 4) we construct many smooth curves such that r X ( q ) ≤ 2 (resp. r X ( q ) ≤ 3) for all q ∈ P r (the best possible upper bound). We also construct nodal curves with the same properties and almost all geometric genera allowed by Castelnuovo’s upper bound for the arithmetic genus. q ∈ P r el -rango X ) q que generan q P r tiene X -rango ⌈ ( r + 1) / 2 ⌉ . Para r = 3 (resp. r = 4) construimos q ) ≤ 2 (resp. r X ( q ) q ∈ P r superior geom´etricos aritm´etico.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4067/s0719-06462020000300379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let X ⊂ P r be an integral and non-degenerate curve. For each q ∈ P r the X -rank r X ( q ) of q is the minimal number of points of X spanning q . A general point of P r has X -rank ⌈ ( r + 1) / 2 ⌉ . For r = 3 (resp. r = 4) we construct many smooth curves such that r X ( q ) ≤ 2 (resp. r X ( q ) ≤ 3) for all q ∈ P r (the best possible upper bound). We also construct nodal curves with the same properties and almost all geometric genera allowed by Castelnuovo’s upper bound for the arithmetic genus. q ∈ P r el -rango X ) q que generan q P r tiene X -rango ⌈ ( r + 1) / 2 ⌉ . Para r = 3 (resp. r = 4) construimos q ) ≤ 2 (resp. r X ( q ) q ∈ P r superior geom´etricos aritm´etico.
设X≠P r为一条积分非简并曲线。对于每一个q∈P r, q的X -rank r X (q)是X生成q的最小点数。P r的一般点具有X -秩(r + 1) / 2)。当r = 3时。r = 4),我们构造了许多光滑曲线,使得r X (q)≤2 (resp。r X (q)≤3)对于所有q∈P r(可能的最佳上界)。我们还构造了具有相同性质的节点曲线和几乎所有算术属的Castelnuovo上界所允许的几何属。q∈P r r l -rango X) q que generan q P r r tiene X -rango≤(r + 1) / 2≤。第3段:R = 4)解释q)≤2 (resp。r X (q) q∈P r优越的几何算法。