A solution to the multidimensional additive homological equation

IF 0.8 3区 数学 Q2 MATHEMATICS
A. Ber, Matthijs J. Borst, Sander Borst, F. Sukochev
{"title":"A solution to the multidimensional additive homological equation","authors":"A. Ber, Matthijs J. Borst, Sander Borst, F. Sukochev","doi":"10.4213/im9319e","DOIUrl":null,"url":null,"abstract":"We prove that, for a finite-dimensional real normed space $V$, every bounded mean zero function $f\\in L_\\infty([0,1];V)$ can be written in the form $f=g\\circ T-g$ for some $g\\in L_\\infty([0,1];V)$ and some ergodic invertible measure preserving transformation $T$ of $[0,1]$. Our method moreover allows us to choose $g$, for any given $\\varepsilon>0$, to be such that $\\|g\\|_\\infty\\leq (S_V+\\varepsilon)\\|f\\|_\\infty$, where $S_V$ is the Steinitz constant corresponding to $V$.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4213/im9319e","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that, for a finite-dimensional real normed space $V$, every bounded mean zero function $f\in L_\infty([0,1];V)$ can be written in the form $f=g\circ T-g$ for some $g\in L_\infty([0,1];V)$ and some ergodic invertible measure preserving transformation $T$ of $[0,1]$. Our method moreover allows us to choose $g$, for any given $\varepsilon>0$, to be such that $\|g\|_\infty\leq (S_V+\varepsilon)\|f\|_\infty$, where $S_V$ is the Steinitz constant corresponding to $V$.
多维加性同调方程的一个解
证明了对于有限维实赋范空间$V$,对于$[0,1]$的一些$g\in L_\infty([0,1];V)$和一些遍历可逆变换$T$,每个有界平均零函数$f\in L_\infty([0,1];V)$都可以写成$f=g\circ T-g$的形式。我们的方法还允许我们选择$g$,对于任意给定的$\varepsilon>0$,使得$\|g\|_\infty\leq (S_V+\varepsilon)\|f\|_\infty$,其中$S_V$是对应于$V$的斯坦尼茨常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信