Shovan Kumar Sahu, Lei Chen, Song Liu, Jia Xing, Rohit Mathur
{"title":"Effect of Future Climate Change on Stratosphere-to-Troposphere-Exchange Driven Ozone in the Northern Hemisphere.","authors":"Shovan Kumar Sahu, Lei Chen, Song Liu, Jia Xing, Rohit Mathur","doi":"10.4209/aaqr.220414","DOIUrl":null,"url":null,"abstract":"<p><p>Future estimates of atmospheric pollutant concentrations serve as critical information for policy makers to formulate current policy indicators to achieve future targets. Tropospheric burden of O<sub>3</sub> is modulated not only by anthropogenic and natural precursor emissions, but also by the downward transport of O<sub>3</sub> associated with stratosphere to troposphere exchange (STE). Hence changes in the estimates of STE and its contributions are key to understand the nature and intensity of future ground level O<sub>3</sub> concentrations. The difference in simulated O<sub>3</sub> mixing ratios with and without the O<sub>3</sub>-Potential Vorticity (PV) parameterization scheme is used to represent the model estimated influence of STE on tropospheric O<sub>3</sub> distributions. Though STE contributions remain constant in Northern hemisphere as a whole, regional differences exist with Europe (EUR) registering increased STE contribution in both spring and winter while Eastern China (ECH) reporting increased contribution in spring in 2050 (RCP8.5) as compared to 2015. Importance of climate change can be deduced from the fact that ECH and EUR recorded increased STE contribution to O<sub>3</sub> in RCP8.5 compared to RCP4.5. Comparison of STE and non-STE meteorological process contributions to O<sub>3</sub> due to climate change revealed that contributions of non-STE processes were highest in summer while STE contributions were highest in winter. EUR reported highest STE contribution while ECH reported highest non-STE contribution. None of the 3 regions show consistent low STE contribution due to future climate change (< 50%) in all seasons indicating the significance of STE to ground level O<sub>3</sub>.</p>","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":"1-15"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802885/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4209/aaqr.220414","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Future estimates of atmospheric pollutant concentrations serve as critical information for policy makers to formulate current policy indicators to achieve future targets. Tropospheric burden of O3 is modulated not only by anthropogenic and natural precursor emissions, but also by the downward transport of O3 associated with stratosphere to troposphere exchange (STE). Hence changes in the estimates of STE and its contributions are key to understand the nature and intensity of future ground level O3 concentrations. The difference in simulated O3 mixing ratios with and without the O3-Potential Vorticity (PV) parameterization scheme is used to represent the model estimated influence of STE on tropospheric O3 distributions. Though STE contributions remain constant in Northern hemisphere as a whole, regional differences exist with Europe (EUR) registering increased STE contribution in both spring and winter while Eastern China (ECH) reporting increased contribution in spring in 2050 (RCP8.5) as compared to 2015. Importance of climate change can be deduced from the fact that ECH and EUR recorded increased STE contribution to O3 in RCP8.5 compared to RCP4.5. Comparison of STE and non-STE meteorological process contributions to O3 due to climate change revealed that contributions of non-STE processes were highest in summer while STE contributions were highest in winter. EUR reported highest STE contribution while ECH reported highest non-STE contribution. None of the 3 regions show consistent low STE contribution due to future climate change (< 50%) in all seasons indicating the significance of STE to ground level O3.
期刊介绍:
The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including:
- Aerosol, air quality, atmospheric chemistry and global change;
- Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure;
- Nanoparticle and nanotechnology;
- Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis;
- Effects on the environments;
- Air quality and human health;
- Bioaerosols;
- Indoor air quality;
- Energy and air pollution;
- Pollution control technologies;
- Invention and improvement of sampling instruments and technologies;
- Optical/radiative properties and remote sensing;
- Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission;
- Other topics related to aerosol and air quality.