A Machine-Learning-Based Classification Method for Meteorological Conditions of Ozone Pollution

IF 2.5 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Yang Cao, Xiaoli Zhao, Debin Su, Xiang Cheng, Hong Ren
{"title":"A Machine-Learning-Based Classification Method for Meteorological Conditions of Ozone Pollution","authors":"Yang Cao, Xiaoli Zhao, Debin Su, Xiang Cheng, Hong Ren","doi":"10.4209/aaqr.220239","DOIUrl":null,"url":null,"abstract":"Ozone pollution is harmful to human health and ecosystem, which occurs in ecosystems and has occurred frequently in China in recent years, especially during the warm seasons. Meteorological conditions are among the important factors affecting the occurrence of ozone pollution. In this study, a classification method for meteorological conditions of ozone pollution levels based on a back propagation (BP) neural network was proposed to reflect the impact of meteorological conditions on the occurrence of ozone pollution. Ozone pollution was divided into three levels according to surface hourly ozone (O 3 ) concentrations and thus into three groups of meteorological conditions. The input physical parameters for the BP neural network were determined by evaluating the relationship between surface O 3 concentrations and meteorological parameters and precursors, including relative humidity, temperature, mixing layer height, precipitation","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":"1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4209/aaqr.220239","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

Ozone pollution is harmful to human health and ecosystem, which occurs in ecosystems and has occurred frequently in China in recent years, especially during the warm seasons. Meteorological conditions are among the important factors affecting the occurrence of ozone pollution. In this study, a classification method for meteorological conditions of ozone pollution levels based on a back propagation (BP) neural network was proposed to reflect the impact of meteorological conditions on the occurrence of ozone pollution. Ozone pollution was divided into three levels according to surface hourly ozone (O 3 ) concentrations and thus into three groups of meteorological conditions. The input physical parameters for the BP neural network were determined by evaluating the relationship between surface O 3 concentrations and meteorological parameters and precursors, including relative humidity, temperature, mixing layer height, precipitation
基于机器学习的臭氧污染气象条件分类方法
摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aerosol and Air Quality Research
Aerosol and Air Quality Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
10.00%
发文量
163
审稿时长
3 months
期刊介绍: The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including: - Aerosol, air quality, atmospheric chemistry and global change; - Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure; - Nanoparticle and nanotechnology; - Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis; - Effects on the environments; - Air quality and human health; - Bioaerosols; - Indoor air quality; - Energy and air pollution; - Pollution control technologies; - Invention and improvement of sampling instruments and technologies; - Optical/radiative properties and remote sensing; - Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission; - Other topics related to aerosol and air quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信