Spatial Autocorrelation in Voting Turnout

Mahdi-Salim Saib
{"title":"Spatial Autocorrelation in Voting Turnout","authors":"Mahdi-Salim Saib","doi":"10.4172/2155-6180.1000376","DOIUrl":null,"url":null,"abstract":"The presence of spatial autocorrelation in the data can yield biased or inconsistent point estimates when Ordinary Least Squares (OLS) model is used inappropriately. Therefore, in this paper we try to assess the fit of the model taking into account the autocorrelation in analyze of voting behavior in the 2007 French Presidential Elections and the 2010 French Regional Elections. We find that the voter turnout in the Il de France region is spatially structured and that the Simultaneous Auto-Regressive (SAR) model clearly improves the quality of adjustment compared with the OLS model for the both elections.","PeriodicalId":87294,"journal":{"name":"Journal of biometrics & biostatistics","volume":"8 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biometrics & biostatistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-6180.1000376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The presence of spatial autocorrelation in the data can yield biased or inconsistent point estimates when Ordinary Least Squares (OLS) model is used inappropriately. Therefore, in this paper we try to assess the fit of the model taking into account the autocorrelation in analyze of voting behavior in the 2007 French Presidential Elections and the 2010 French Regional Elections. We find that the voter turnout in the Il de France region is spatially structured and that the Simultaneous Auto-Regressive (SAR) model clearly improves the quality of adjustment compared with the OLS model for the both elections.
投票率的空间自相关
当不恰当地使用普通最小二乘(OLS)模型时,数据中空间自相关的存在会产生偏差或不一致的点估计。因此,本文在分析2007年法国总统选举和2010年法国大区选举的投票行为时,试图考虑自相关来评估模型的拟合性。我们发现,法国大区的选民投票率具有空间结构,同时自回归(SAR)模型与OLS模型相比,明显提高了两次选举的调整质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信