Boolean-valued class forcing

IF 0.5 3区 数学 Q3 MATHEMATICS
C. Antos, S. Friedman, V. Gitman
{"title":"Boolean-valued class forcing","authors":"C. Antos, S. Friedman, V. Gitman","doi":"10.4064/fm20-7-2021","DOIUrl":null,"url":null,"abstract":"We show that the Boolean algebras approach to class forcing can be carried out in the theory Kelley-Morse plus the Choice Scheme (KM + CC) using hyperclass Boolean completions of class partial orders. Applying the Boolean algebras approach, we show that every intermediate model between a model V |= KM + CC and one of its class forcing extensions is itself a class forcing extension if and only if it is simple generated by the classes of V together with a single new class. We show that a model of KM + CC and its class forcing extension may have non-simple intermediate models, and thus, the Intermediate Model Theorem can fail for models of KM + CC.","PeriodicalId":55138,"journal":{"name":"Fundamenta Mathematicae","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm20-7-2021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

We show that the Boolean algebras approach to class forcing can be carried out in the theory Kelley-Morse plus the Choice Scheme (KM + CC) using hyperclass Boolean completions of class partial orders. Applying the Boolean algebras approach, we show that every intermediate model between a model V |= KM + CC and one of its class forcing extensions is itself a class forcing extension if and only if it is simple generated by the classes of V together with a single new class. We show that a model of KM + CC and its class forcing extension may have non-simple intermediate models, and thus, the Intermediate Model Theorem can fail for models of KM + CC.
布尔值类强制
利用类偏序的超类布尔补全,我们证明了布尔代数方法可以在Kelley-Morse理论加选择方案(KM + CC)中实现类强迫。应用布尔代数方法,我们证明了在模型V |= KM + CC和它的一个类强制扩展之间的每一个中间模型本身是一个类强制扩展,当且仅当它是由V的类和一个新类一起简单生成的。我们证明了KM + CC模型及其类强迫扩展可能存在非简单的中间模型,因此中间模型定理对于KM + CC模型是不成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamenta Mathematicae
Fundamenta Mathematicae 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: FUNDAMENTA MATHEMATICAE concentrates on papers devoted to Set Theory, Mathematical Logic and Foundations of Mathematics, Topology and its Interactions with Algebra, Dynamical Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信