Topological reconstruction of sub-cellular motion with Ensemble Kalman velocimetry

IF 1.7 Q2 MATHEMATICS, APPLIED
Le Yin, Ioannis Sgouralis, V. Maroulas
{"title":"Topological reconstruction of sub-cellular motion with Ensemble Kalman velocimetry","authors":"Le Yin, Ioannis Sgouralis, V. Maroulas","doi":"10.3934/fods.2020007","DOIUrl":null,"url":null,"abstract":"Microscopy imaging of plant cells allows the elaborate analysis of sub-cellular motions of organelles. The large video data set can be efficiently analyzed by automated algorithms. We develop a novel, data-oriented algorithm, which can track organelle movements and reconstruct their trajectories on stacks of image data. Our method proceeds with three steps: (ⅰ) identification, (ⅱ) localization, and (ⅲ) linking. This method combines topological data analysis and Ensemble Kalman Filtering, and does not assume a specific motion model. Application of this method on simulated data sets shows an agreement with ground truth. We also successfully test our method on real microscopy data.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2020007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Microscopy imaging of plant cells allows the elaborate analysis of sub-cellular motions of organelles. The large video data set can be efficiently analyzed by automated algorithms. We develop a novel, data-oriented algorithm, which can track organelle movements and reconstruct their trajectories on stacks of image data. Our method proceeds with three steps: (ⅰ) identification, (ⅱ) localization, and (ⅲ) linking. This method combines topological data analysis and Ensemble Kalman Filtering, and does not assume a specific motion model. Application of this method on simulated data sets shows an agreement with ground truth. We also successfully test our method on real microscopy data.
基于集合卡尔曼速度法的亚细胞运动拓扑重建
植物细胞的显微镜成像可以详细分析细胞器的亚细胞运动。自动化算法可以有效地分析大型视频数据集。我们开发了一种新颖的,面向数据的算法,它可以跟踪细胞器运动并在图像数据堆栈上重建它们的轨迹。我们的方法分为三个步骤:(ⅰ)识别,(ⅱ)定位,(ⅲ)连接。该方法结合了拓扑数据分析和集成卡尔曼滤波,不假设特定的运动模型。在模拟数据集上的应用表明,该方法与地面真实值一致。我们还成功地在真实的显微镜数据上测试了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信