{"title":"Application of Improved Jellyfish Search algorithm in Rotate Vector reducer fault diagnosis","authors":"Xiaoyan Wu, Guowen Ye, Yongming Liu, Zhuanzhe Zhao, Zhibo Liu, Yu Chen","doi":"10.3934/era.2023250","DOIUrl":null,"url":null,"abstract":"In order to overcome the low accuracy of traditional Extreme Learning Machine (ELM) network in the performance evaluation of Rotate Vector (RV) reducer, a pattern recognition model of ELM based on Ensemble Empirical Mode Decomposition (EEMD) fusion and Improved artificial Jellyfish Search (IJS) algorithm was proposed for RV reducer fault diagnosis. Firstly, it is theoretically proved that the torque transmission of RV reducer has periodicity during normal operation. The characteristics of data periodicity can be effectively reflected by using the test signal periodicity characteristics of rotating machinery and EEMD. Secondly, the Logistic chaotic mapping of population initialization in JS algorithm is replaced by tent mapping. At the same time, the competition mechanism is introduced to form a new IJS. The simulation results of standard test function show that the new algorithm has the characteristics of faster convergence and higher accuracy. The new algorithm was used to optimize the input layer weight of the ELM, and the pattern recognition model of IJS-ELM was established. The model performance was tested by XJTU-SY bearing experimental data set of Xi'an Jiaotong University. The results show that the new model is superior to JS-ELM and ELM in multi-classification performance. Finally, the new model is applied to the fault diagnosis of RV reducer. The results show that the proposed EEMD-IJS-ELM fault diagnosis model has higher accuracy and stability than other models.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023250","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to overcome the low accuracy of traditional Extreme Learning Machine (ELM) network in the performance evaluation of Rotate Vector (RV) reducer, a pattern recognition model of ELM based on Ensemble Empirical Mode Decomposition (EEMD) fusion and Improved artificial Jellyfish Search (IJS) algorithm was proposed for RV reducer fault diagnosis. Firstly, it is theoretically proved that the torque transmission of RV reducer has periodicity during normal operation. The characteristics of data periodicity can be effectively reflected by using the test signal periodicity characteristics of rotating machinery and EEMD. Secondly, the Logistic chaotic mapping of population initialization in JS algorithm is replaced by tent mapping. At the same time, the competition mechanism is introduced to form a new IJS. The simulation results of standard test function show that the new algorithm has the characteristics of faster convergence and higher accuracy. The new algorithm was used to optimize the input layer weight of the ELM, and the pattern recognition model of IJS-ELM was established. The model performance was tested by XJTU-SY bearing experimental data set of Xi'an Jiaotong University. The results show that the new model is superior to JS-ELM and ELM in multi-classification performance. Finally, the new model is applied to the fault diagnosis of RV reducer. The results show that the proposed EEMD-IJS-ELM fault diagnosis model has higher accuracy and stability than other models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.