{"title":"Numerical study for a class of time fractional diffusion equations using operational matrices based on Hosoya polynomial","authors":"Ping Zhou, H. Jafari, R. Ganji, S. Narsale","doi":"10.3934/era.2023231","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a numerical method by using operational matrices based on Hosoya polynomials of simple paths to find the approximate solution of diffusion equations of fractional order with respect to time. This method is applied to certain diffusion equations like time fractional advection-diffusion equations and time fractional Kolmogorov equations. Here we use the Atangana-Baleanu fractional derivative. With the help of this approach we convert these equations to a set of algebraic equations, which is easier to be solved. Also, the error bound is provided. The obtained numerical solutions using the presented method are compared with the exact solutions. The numerical results show that the suggested method is convenient and accurate.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023231","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we develop a numerical method by using operational matrices based on Hosoya polynomials of simple paths to find the approximate solution of diffusion equations of fractional order with respect to time. This method is applied to certain diffusion equations like time fractional advection-diffusion equations and time fractional Kolmogorov equations. Here we use the Atangana-Baleanu fractional derivative. With the help of this approach we convert these equations to a set of algebraic equations, which is easier to be solved. Also, the error bound is provided. The obtained numerical solutions using the presented method are compared with the exact solutions. The numerical results show that the suggested method is convenient and accurate.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.