{"title":"Tunicate swarm algorithm with deep convolutional neural network-driven colorectal cancer classification from histopathological imaging data","authors":"A. A. AL-Ghamdi, Mahmoud Ragab","doi":"10.3934/era.2023141","DOIUrl":null,"url":null,"abstract":"Colorectal cancer (CRC) is one of the most popular cancers among both men and women, with increasing incidence. The enhanced analytical load data from the pathology laboratory, integrated with described intra- and inter-variabilities through the calculation of biomarkers, has prompted the quest for robust machine-based approaches in combination with routine practice. In histopathology, deep learning (DL) techniques have been applied at large due to their potential for supporting the analysis and forecasting of medically appropriate molecular phenotypes and microsatellite instability. Considering this background, the current research work presents a metaheuristics technique with deep convolutional neural network-based colorectal cancer classification based on histopathological imaging data (MDCNN-C3HI). The presented MDCNN-C3HI technique majorly examines the histopathological images for the classification of colorectal cancer (CRC). At the initial stage, the MDCNN-C3HI technique applies a bilateral filtering approach to get rid of the noise. Then, the proposed MDCNN-C3HI technique uses an enhanced capsule network with the Adam optimizer for the extraction of feature vectors. For CRC classification, the MDCNN-C3HI technique uses a DL modified neural network classifier, whereas the tunicate swarm algorithm is used to fine-tune its hyperparameters. To demonstrate the enhanced performance of the proposed MDCNN-C3HI technique on CRC classification, a wide range of experiments was conducted. The outcomes from the extensive experimentation procedure confirmed the superior performance of the proposed MDCNN-C3HI technique over other existing techniques, achieving a maximum accuracy of 99.45%, a sensitivity of 99.45% and a specificity of 99.45%.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023141","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Colorectal cancer (CRC) is one of the most popular cancers among both men and women, with increasing incidence. The enhanced analytical load data from the pathology laboratory, integrated with described intra- and inter-variabilities through the calculation of biomarkers, has prompted the quest for robust machine-based approaches in combination with routine practice. In histopathology, deep learning (DL) techniques have been applied at large due to their potential for supporting the analysis and forecasting of medically appropriate molecular phenotypes and microsatellite instability. Considering this background, the current research work presents a metaheuristics technique with deep convolutional neural network-based colorectal cancer classification based on histopathological imaging data (MDCNN-C3HI). The presented MDCNN-C3HI technique majorly examines the histopathological images for the classification of colorectal cancer (CRC). At the initial stage, the MDCNN-C3HI technique applies a bilateral filtering approach to get rid of the noise. Then, the proposed MDCNN-C3HI technique uses an enhanced capsule network with the Adam optimizer for the extraction of feature vectors. For CRC classification, the MDCNN-C3HI technique uses a DL modified neural network classifier, whereas the tunicate swarm algorithm is used to fine-tune its hyperparameters. To demonstrate the enhanced performance of the proposed MDCNN-C3HI technique on CRC classification, a wide range of experiments was conducted. The outcomes from the extensive experimentation procedure confirmed the superior performance of the proposed MDCNN-C3HI technique over other existing techniques, achieving a maximum accuracy of 99.45%, a sensitivity of 99.45% and a specificity of 99.45%.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.