Algorithms for solving a class of real quasi-symmetric Toeplitz linear systems and its applications

IF 1 4区 数学 Q1 MATHEMATICS
Xinglong Zhang, Xiaoyu Jiang, Zhaolin Jiang, Hee-Young Byun
{"title":"Algorithms for solving a class of real quasi-symmetric Toeplitz linear systems and its applications","authors":"Xinglong Zhang, Xiaoyu Jiang, Zhaolin Jiang, Hee-Young Byun","doi":"10.3934/era.2023101","DOIUrl":null,"url":null,"abstract":"In this paper, fast numerical methods for solving the real quasi-symmetric Toeplitz linear system are studied in two stages. First, based on an order-reduction algorithm and the factorization of Toeplitz matrix inversion, a sequence of linear systems with a constant symmetric Toeplitz matrix are solved. Second, two new fast algorithms are employed to solve the real quasi-symmetric Toeplitz linear system. Furthermore, we show a fast algorithm for quasi-symmetric Toeplitz matrix-vector multiplication. In addition, the stability analysis of the splitting symmetric Toeplitz inversion is discussed. In mathematical or engineering problems, the proposed algorithms are extraordinarily effective for solving a sequence of linear systems with a constant symmetric Toeplitz matrix. Fast matrix-vector multiplication and a quasi-symmetric Toeplitz linear solver are proven to be suitable for image encryption and decryption.","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023101","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, fast numerical methods for solving the real quasi-symmetric Toeplitz linear system are studied in two stages. First, based on an order-reduction algorithm and the factorization of Toeplitz matrix inversion, a sequence of linear systems with a constant symmetric Toeplitz matrix are solved. Second, two new fast algorithms are employed to solve the real quasi-symmetric Toeplitz linear system. Furthermore, we show a fast algorithm for quasi-symmetric Toeplitz matrix-vector multiplication. In addition, the stability analysis of the splitting symmetric Toeplitz inversion is discussed. In mathematical or engineering problems, the proposed algorithms are extraordinarily effective for solving a sequence of linear systems with a constant symmetric Toeplitz matrix. Fast matrix-vector multiplication and a quasi-symmetric Toeplitz linear solver are proven to be suitable for image encryption and decryption.
一类实拟对称Toeplitz线性系统的求解算法及其应用
本文分两个阶段研究了求解实拟对称Toeplitz线性系统的快速数值方法。首先,基于降阶算法和Toeplitz矩阵逆分解,求解了一类具有常对称Toeplitz矩阵的线性系统序列。其次,采用两种新的快速算法求解拟对称Toeplitz线性方程组。此外,我们给出了一个准对称Toeplitz矩阵向量乘法的快速算法。此外,还讨论了分裂对称Toeplitz反演的稳定性分析。在数学或工程问题中,所提出的算法对于求解具有恒定对称Toeplitz矩阵的线性系统序列非常有效。证明了快速矩阵向量乘法和准对称Toeplitz线性解算器适用于图像加解密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信