The critical exponents for a semilinear fractional pseudo-parabolic equation with nonlinear memory in a bounded domain

IF 1 4区 数学 Q1 MATHEMATICS
Yaning Li, Yuting Yang
{"title":"The critical exponents for a semilinear fractional pseudo-parabolic equation with nonlinear memory in a bounded domain","authors":"Yaning Li, Yuting Yang","doi":"10.3934/era.2023129","DOIUrl":null,"url":null,"abstract":"This paper considers blow-up and global existence for a semilinear space-time fractional pseudo-parabolic equation with nonlinear memory in a bounded domain. We determine the critical exponents of the Cauchy problem when $ \\alpha < \\gamma $ and $ \\alpha\\ge \\gamma, $ respectively. The results obtained in this study are noteworthy extension to the results of time-fractional differential equation. The critical exponent is consistent with the corresponding Cauchy problem for the time-fractional differential equation with nonlinear memory, which illustrates that the diffusion effect of the third order term is not strong enough to change the critical exponents.","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023129","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper considers blow-up and global existence for a semilinear space-time fractional pseudo-parabolic equation with nonlinear memory in a bounded domain. We determine the critical exponents of the Cauchy problem when $ \alpha < \gamma $ and $ \alpha\ge \gamma, $ respectively. The results obtained in this study are noteworthy extension to the results of time-fractional differential equation. The critical exponent is consistent with the corresponding Cauchy problem for the time-fractional differential equation with nonlinear memory, which illustrates that the diffusion effect of the third order term is not strong enough to change the critical exponents.
一类具有非线性记忆的半线性分数型伪抛物型方程在有界区域内的临界指数
研究一类具有非线性记忆的半线性时空分数型伪抛物型方程在有界区域上的爆破性和全局存在性。我们分别在$ \alpha < \gamma $和$ \alpha\ge \gamma, $时确定了柯西问题的临界指数。所得结果对时间分数阶微分方程的结果有重要的推广意义。具有非线性记忆的时间分数阶微分方程的临界指数与相应的Cauchy问题一致,说明三阶项的扩散效应不足以改变临界指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信