{"title":"Existence of a positive radial solution for semilinear elliptic problem involving variable exponent","authors":"Changmu Chu, Shan Li, H. Suo","doi":"10.3934/era.2023125","DOIUrl":null,"url":null,"abstract":"<abstract><p>This paper consider that the following semilinear elliptic equation</p> <p><disp-formula> <label>0.1</label> <tex-math id=\"E0.1\"> \\begin{document}$ \\begin{equation} \\left\\{ \\begin{array}{ll} -\\Delta u = u^{q(x)-1}, &\\ \\ {\\mbox{in}}\\ \\ B_1,\\\\ u>0, &\\ \\ {\\mbox{in}}\\ \\ B_1,\\\\ u = 0, &\\ \\ {\\mbox{in}}\\ \\ \\partial B_1, \\end{array} \\right. \\end{equation} $\\end{document} </tex-math></disp-formula></p> <p>where $ B_1 $ is the unit ball in $ \\mathbb{R}^N(N\\geq 3) $, $ q(x) = q(|x|) $ is a continuous radial function satifying $ 2\\leq q(x) < 2^* = \\frac{2N}{N-2} $ and $ q(0) > 2 $. Using variational methods and a priori estimate, the existence of a positive radial solution for (0.1) is obtained.</p></abstract>","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023125","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper consider that the following semilinear elliptic equation
where $ B_1 $ is the unit ball in $ \mathbb{R}^N(N\geq 3) $, $ q(x) = q(|x|) $ is a continuous radial function satifying $ 2\leq q(x) < 2^* = \frac{2N}{N-2} $ and $ q(0) > 2 $. Using variational methods and a priori estimate, the existence of a positive radial solution for (0.1) is obtained.
This paper consider that the following semilinear elliptic equation 0.1 \begin{document}$ \begin{equation} \left\{ \begin{array}{ll} -\Delta u = u^{q(x)-1}, &\ \ {\mbox{in}}\ \ B_1,\\ u>0, &\ \ {\mbox{in}}\ \ B_1,\\ u = 0, &\ \ {\mbox{in}}\ \ \partial B_1, \end{array} \right. \end{equation} $\end{document} where $ B_1 $ is the unit ball in $ \mathbb{R}^N(N\geq 3) $, $ q(x) = q(|x|) $ is a continuous radial function satifying $ 2\leq q(x) < 2^* = \frac{2N}{N-2} $ and $ q(0) > 2 $. Using variational methods and a priori estimate, the existence of a positive radial solution for (0.1) is obtained.