Existence of a positive radial solution for semilinear elliptic problem involving variable exponent

IF 1 4区 数学 Q1 MATHEMATICS
Changmu Chu, Shan Li, H. Suo
{"title":"Existence of a positive radial solution for semilinear elliptic problem involving variable exponent","authors":"Changmu Chu, Shan Li, H. Suo","doi":"10.3934/era.2023125","DOIUrl":null,"url":null,"abstract":"<abstract><p>This paper consider that the following semilinear elliptic equation</p> <p><disp-formula> <label>0.1</label> <tex-math id=\"E0.1\"> \\begin{document}$ \\begin{equation} \\left\\{ \\begin{array}{ll} -\\Delta u = u^{q(x)-1}, &\\ \\ {\\mbox{in}}\\ \\ B_1,\\\\ u>0, &\\ \\ {\\mbox{in}}\\ \\ B_1,\\\\ u = 0, &\\ \\ {\\mbox{in}}\\ \\ \\partial B_1, \\end{array} \\right. \\end{equation} $\\end{document} </tex-math></disp-formula></p> <p>where $ B_1 $ is the unit ball in $ \\mathbb{R}^N(N\\geq 3) $, $ q(x) = q(|x|) $ is a continuous radial function satifying $ 2\\leq q(x) < 2^* = \\frac{2N}{N-2} $ and $ q(0) > 2 $. Using variational methods and a priori estimate, the existence of a positive radial solution for (0.1) is obtained.</p></abstract>","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023125","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper consider that the following semilinear elliptic equation

\begin{document}$ \begin{equation} \left\{ \begin{array}{ll} -\Delta u = u^{q(x)-1}, &\ \ {\mbox{in}}\ \ B_1,\\ u>0, &\ \ {\mbox{in}}\ \ B_1,\\ u = 0, &\ \ {\mbox{in}}\ \ \partial B_1, \end{array} \right. \end{equation} $\end{document}

where $ B_1 $ is the unit ball in $ \mathbb{R}^N(N\geq 3) $, $ q(x) = q(|x|) $ is a continuous radial function satifying $ 2\leq q(x) < 2^* = \frac{2N}{N-2} $ and $ q(0) > 2 $. Using variational methods and a priori estimate, the existence of a positive radial solution for (0.1) is obtained.

变指数半线性椭圆型问题径向正解的存在性
This paper consider that the following semilinear elliptic equation 0.1 \begin{document}$ \begin{equation} \left\{ \begin{array}{ll} -\Delta u = u^{q(x)-1}, &\ \ {\mbox{in}}\ \ B_1,\\ u>0, &\ \ {\mbox{in}}\ \ B_1,\\ u = 0, &\ \ {\mbox{in}}\ \ \partial B_1, \end{array} \right. \end{equation} $\end{document} where $ B_1 $ is the unit ball in $ \mathbb{R}^N(N\geq 3) $, $ q(x) = q(|x|) $ is a continuous radial function satifying $ 2\leq q(x) < 2^* = \frac{2N}{N-2} $ and $ q(0) > 2 $. Using variational methods and a priori estimate, the existence of a positive radial solution for (0.1) is obtained.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信