Probabilistic invertible neural network for inverse design space exploration and reasoning

IF 1 4区 数学 Q1 MATHEMATICS
Yiming Zhang, Zhiwei Pan, Shuyou Zhang, Na Qiu
{"title":"Probabilistic invertible neural network for inverse design space exploration and reasoning","authors":"Yiming Zhang, Zhiwei Pan, Shuyou Zhang, Na Qiu","doi":"10.3934/era.2023043","DOIUrl":null,"url":null,"abstract":"Invertible neural network (INN) is a promising tool for inverse design optimization. While generating forward predictions from given inputs to the system response, INN enables the inverse process without much extra cost. The inverse process of INN predicts the possible input parameters for the specified system response qualitatively. For the purpose of design space exploration and reasoning for critical engineering systems, accurate predictions from the inverse process are required. Moreover, INN predictions lack effective uncertainty quantification for regression tasks, which increases the challenges of decision making. This paper proposes the probabilistic invertible neural network (P-INN): the epistemic uncertainty and aleatoric uncertainty are integrated with INN. A new loss function is formulated to guide the training process with enhancement in the inverse process accuracy. Numerical evaluations have shown that the proposed P-INN has noticeable improvement on the inverse process accuracy and the prediction uncertainty is reliable.","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023043","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Invertible neural network (INN) is a promising tool for inverse design optimization. While generating forward predictions from given inputs to the system response, INN enables the inverse process without much extra cost. The inverse process of INN predicts the possible input parameters for the specified system response qualitatively. For the purpose of design space exploration and reasoning for critical engineering systems, accurate predictions from the inverse process are required. Moreover, INN predictions lack effective uncertainty quantification for regression tasks, which increases the challenges of decision making. This paper proposes the probabilistic invertible neural network (P-INN): the epistemic uncertainty and aleatoric uncertainty are integrated with INN. A new loss function is formulated to guide the training process with enhancement in the inverse process accuracy. Numerical evaluations have shown that the proposed P-INN has noticeable improvement on the inverse process accuracy and the prediction uncertainty is reliable.
基于概率可逆神经网络的逆设计空间探索与推理
可逆神经网络(INN)是一种很有前途的反设计优化工具。当从给定的系统响应输入生成前向预测时,INN可以在没有太多额外成本的情况下实现反向过程。INN的逆过程定性地预测了给定系统响应的可能输入参数。为了对关键工程系统进行设计空间探索和推理,需要从逆过程中进行准确的预测。此外,INN预测缺乏对回归任务的有效不确定性量化,这增加了决策的挑战。本文提出了一种概率可逆神经网络(P-INN),它将认知不确定性和任意不确定性结合在一起。提出了一种新的损失函数来指导训练过程,提高了逆过程的精度。数值计算结果表明,所提出的P-INN方法对逆过程精度有明显提高,预测不确定性可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
170
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信