Banach limit in convexity and geometric means for convex bodies

Q3 Mathematics
Liran Rotem
{"title":"Banach limit in convexity and geometric means for convex bodies","authors":"Liran Rotem","doi":"10.3934/ERA.2016.23.005","DOIUrl":null,"url":null,"abstract":"In this note we construct Banach limits on the class of sequences \nof convex bodies. Surprisingly, the construction uses the recently \nintroduced geometric mean of convex bodies. In the opposite direction, \nwe explain how Banach limits can be used to construct a new variant \nof the geometric mean that has some desirable properties.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"23 1","pages":"41-51"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2016.23.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

In this note we construct Banach limits on the class of sequences of convex bodies. Surprisingly, the construction uses the recently introduced geometric mean of convex bodies. In the opposite direction, we explain how Banach limits can be used to construct a new variant of the geometric mean that has some desirable properties.
凸性的Banach极限与凸体的几何均值
本文构造了一类凸体序列的Banach极限。令人惊讶的是,该建筑使用了最近引入的凸体几何平均值。在相反的方向上,我们解释了如何使用巴拿赫极限来构造具有一些理想性质的几何平均值的新变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信