Number of extremal subsets in Alexandrov spaces and rigidity

Q3 Mathematics
N. Lebedeva
{"title":"Number of extremal subsets in Alexandrov spaces and rigidity","authors":"N. Lebedeva","doi":"10.3934/ERA.2014.21.120","DOIUrl":null,"url":null,"abstract":"In this paper we announce the following result. We show that any $n$-dimensional nonnegatively curved Alexandrov space with the maximal possible number of extremal points is isometric to a quotient space of $\\mathbb{R}^n$ by an action of a crystallographic group. We describe all such actions. We start with a history, results and open questions concerning estimates on the number of extremal subsets in Alexandrov spaces. Then we give the plan of the proof of our result; the complete proof will published elsewhere.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"44 1","pages":"120-125"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2014.21.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we announce the following result. We show that any $n$-dimensional nonnegatively curved Alexandrov space with the maximal possible number of extremal points is isometric to a quotient space of $\mathbb{R}^n$ by an action of a crystallographic group. We describe all such actions. We start with a history, results and open questions concerning estimates on the number of extremal subsets in Alexandrov spaces. Then we give the plan of the proof of our result; the complete proof will published elsewhere.
Alexandrov空间的极值子集数与刚性
在本文中,我们宣布以下结果。通过晶体群的作用,证明了具有最大可能极值个数的任意$n$维非负弯曲Alexandrov空间与$\mathbb{R}^n$商空间是等距的。我们描述所有这些行为。我们从Alexandrov空间中极值子集数量估计的历史、结果和开放性问题开始。然后给出了结果的证明方案;完整的证明将在其他地方发表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信