Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature

Q3 Mathematics
Y. Canzani, A. Gover, D. Jakobson, Raphael Ponge
{"title":"Nullspaces of conformally invariant operators. Applications to $\\boldsymbol{Q_k}$-curvature","authors":"Y. Canzani, A. Gover, D. Jakobson, Raphael Ponge","doi":"10.3934/ERA.2013.20.43","DOIUrl":null,"url":null,"abstract":"We study conformal invariants that arise from functions in the \nnullspace of conformally covariant differential operators. \nThe invariants include nodal sets and the topology of nodal domains \nof eigenfunctions in the kernel of GJMS operators. We establish \nthat on any manifold of dimension $n\\geq 3$, there exist many metrics \nfor which our invariants are nontrivial. We discuss new applications \nto curvature prescription problems.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"20 1","pages":"43-50"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2013.20.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

We study conformal invariants that arise from functions in the nullspace of conformally covariant differential operators. The invariants include nodal sets and the topology of nodal domains of eigenfunctions in the kernel of GJMS operators. We establish that on any manifold of dimension $n\geq 3$, there exist many metrics for which our invariants are nontrivial. We discuss new applications to curvature prescription problems.
共形不变算子的零空间。$\boldsymbol{Q_k}$-曲率的应用
研究了保形协变微分算子零空间中函数的保形不变量。不变量包括GJMS算子核中特征函数的节点集和节点域拓扑。我们建立了在任意维度$n\geq 3$的流形上,存在许多度量的不变量是非平凡的。讨论了曲率处方问题的新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信