The spectral gap of graphs and Steklov eigenvalues on surfaces

Q3 Mathematics
B. Colbois, A. Girouard
{"title":"The spectral gap of graphs and Steklov eigenvalues on surfaces","authors":"B. Colbois, A. Girouard","doi":"10.3934/era.2014.21.19","DOIUrl":null,"url":null,"abstract":"Using expander graphs, we construct a sequence \n $\\{\\Omega_N\\}_{N\\in\\mathbb{N}}$ of smooth compact surfaces with boundary of \n perimeter $N$, and with the first non-zero Steklov \n eigenvalue $\\sigma_1(\\Omega_N)$ uniformly bounded away from \n zero. This answers a question which was raised in [10]. The \n sequence $\\sigma_1(\\Omega_N) L(\\partial\\Omega_n)$ grows linearly with the genus of \n $\\Omega_N$, which is the optimal growth rate.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"21 1","pages":"19-27"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.2014.21.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

Abstract

Using expander graphs, we construct a sequence $\{\Omega_N\}_{N\in\mathbb{N}}$ of smooth compact surfaces with boundary of perimeter $N$, and with the first non-zero Steklov eigenvalue $\sigma_1(\Omega_N)$ uniformly bounded away from zero. This answers a question which was raised in [10]. The sequence $\sigma_1(\Omega_N) L(\partial\Omega_n)$ grows linearly with the genus of $\Omega_N$, which is the optimal growth rate.
图的谱隙和曲面上的Steklov特征值
利用展开图,构造了一个光滑紧曲面序列$\{\Omega_N\}_{N\in\mathbb{N}}$,其边界周长为$N$,第一个非零Steklov特征值$\sigma_1(\Omega_N)$均匀有界远离零。这就回答了b[10]年提出的一个问题。序列$\sigma_1(\Omega_N) L(\partial\Omega_n)$与$\Omega_N$属线性生长,为最优生长速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信