Order isomorphisms in windows

Q3 Mathematics
S. Artstein-Avidan, D. Florentin, V. Milman
{"title":"Order isomorphisms in windows","authors":"S. Artstein-Avidan, D. Florentin, V. Milman","doi":"10.3934/ERA.2011.18.112","DOIUrl":null,"url":null,"abstract":"We characterize order preserving transforms on the class of \nlower-semi-continuous convex functions that are defined on a convex \nsubset of $\\mathbb{R}^n$ (a \"window\") and some of its variants. To this \nend, we investigate convexity preserving maps on subsets of $\\mathbb{R}^n$. \nWe prove that, in general, an order isomorphism is induced by a \nspecial convexity preserving point map on the epi-graph of the \nfunction. In the case of non-negative convex functions on $K$, where \n$0\\in K$ and $f(0) = 0$, one may naturally partition the set of \norder isomorphisms into two classes; we explain the main ideas \nbehind these results.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"18 1","pages":"112-118"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2011.18.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

We characterize order preserving transforms on the class of lower-semi-continuous convex functions that are defined on a convex subset of $\mathbb{R}^n$ (a "window") and some of its variants. To this end, we investigate convexity preserving maps on subsets of $\mathbb{R}^n$. We prove that, in general, an order isomorphism is induced by a special convexity preserving point map on the epi-graph of the function. In the case of non-negative convex functions on $K$, where $0\in K$ and $f(0) = 0$, one may naturally partition the set of order isomorphisms into two classes; we explain the main ideas behind these results.
窗口中的序同构
我们刻画了在$\mathbb{R}^n$(一个“窗口”)的凸子集及其变体上定义的下半连续凸函数类上的保序变换。为此,我们研究了$\mathbb{R}^n$子集上的保凸映射。在一般情况下,我们证明了一个序同构是由一个特殊的保凸点映射在函数的外延图上引起的。对于K$上的非负凸函数,其中$0\ In K$且$f(0) = 0$,可以很自然地将序同构集划分为两类;我们将解释这些结果背后的主要思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信