RESEARCH ANNOUNCEMENT: THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY

Q3 Mathematics
D. Wise
{"title":"RESEARCH ANNOUNCEMENT: THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY","authors":"D. Wise","doi":"10.3934/ERA.2009.16.44","DOIUrl":null,"url":null,"abstract":"Let $G$ be a word-hyperbolic group with a quasiconvex hierarchy. \nWe show that $G$ has a finite index subgroup $G'$ that embeds as a \n quasiconvex subgroup of a right-angled Artin group. \nIt follows that every quasiconvex subgroup of $G$ is a virtual retract, \nand is hence separable. \nThe results are applied to certain 3-manifold and one-relator groups.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"16 1","pages":"44-55"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"342","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2009.16.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 342

Abstract

Let $G$ be a word-hyperbolic group with a quasiconvex hierarchy. We show that $G$ has a finite index subgroup $G'$ that embeds as a quasiconvex subgroup of a right-angled Artin group. It follows that every quasiconvex subgroup of $G$ is a virtual retract, and is hence separable. The results are applied to certain 3-manifold and one-relator groups.
研究公告:具有拟凸层次的群的结构
设$G$是一个具有拟凸层次的词双曲群。证明了$G$有一个有限索引子群$G'$,它嵌入为直角Artin群的拟凸子群。由此得出$G$的每一个拟凸子群都是虚缩回,因此是可分的。结果应用于某些3流形和1相关群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信