Realization of joint spectral radius via Ergodic theory

Q3 Mathematics
Xiongping Dai, Yu Huang, Mingqing Xiao
{"title":"Realization of joint spectral radius via Ergodic theory","authors":"Xiongping Dai, Yu Huang, Mingqing Xiao","doi":"10.3934/ERA.2011.18.22","DOIUrl":null,"url":null,"abstract":"Based on the classic multiplicative ergodic theorem and the semi-uniform subadditive ergodic theorem, we show that there always exists at least one ergodic Borel probability measure such that \nthe joint spectral radius of a finite set of square matrices of the same size can be realized almost everywhere with respect to this Borel probability measure. The existence of at least one ergodic Borel probability measure, in the context of the joint spectral radius problem, is obtained in a general setting.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"8 1","pages":"22-30"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3934/ERA.2011.18.22","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2011.18.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

Abstract

Based on the classic multiplicative ergodic theorem and the semi-uniform subadditive ergodic theorem, we show that there always exists at least one ergodic Borel probability measure such that the joint spectral radius of a finite set of square matrices of the same size can be realized almost everywhere with respect to this Borel probability measure. The existence of at least one ergodic Borel probability measure, in the context of the joint spectral radius problem, is obtained in a general setting.
利用遍历理论实现关节谱半径
基于经典的乘法遍历定理和半一致次加性遍历定理,我们证明了总是存在至少一个遍历Borel概率测度,使得相同大小的有限方阵集合的联合谱半径几乎在任何地方都可以实现。在一般情况下,得到了在联合谱半径问题下,至少存在一个遍历Borel概率测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication. ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信