A novel experimental procedure for lock-in thermography on solar cells

IF 1.8 Q4 ENERGY & FUELS
AIMS Energy Pub Date : 2023-01-01 DOI:10.3934/energy.2023026
Thiago M. Vieira, É. Santana, Luiz F. S. Souza, Renan O. Silva, T. Ferreira, D. B. Riffel
{"title":"A novel experimental procedure for lock-in thermography on solar cells","authors":"Thiago M. Vieira, É. Santana, Luiz F. S. Souza, Renan O. Silva, T. Ferreira, D. B. Riffel","doi":"10.3934/energy.2023026","DOIUrl":null,"url":null,"abstract":"The occurrence of defects in solar cells is intrinsically related to a reduction in the efficiency and reliability of these devices. Therefore, monitoring techniques, such as lock-in thermography, electroluminescence and the I-V characteristic curve are adopted in order to evaluate the integrity of the solar cells. In the present work, a novel experimental procedure for the lock-in thermography of solar cells is proposed, aiming to improve the detection capability of the assay. Conventional techniques use pulse width modulation to operate the cell at a fixed point on the I-V curve. Instead, we propose a methodology based on a sinusoidal electric current excitation in order to extend the range of operational points that are close to the maximum power point as the cell operates in the field. Some traditional image processing techniques (principal component analysis, the fast Fourier transform and the four-step phase-shifting method) have been used to analyze the thermal images captured by an infrared camera during steady-state operation mode of the solar cells using both sinusoidal electric current signal and standard pulse width modulation procedures. Comparison between the results of both procedures found that this novel approach provides smoother and clearer delimitation of the defects. Furthermore, the contrast of the phase images was found to exhibit significant changes between the defective and non-defective regions for different modulation frequencies and types of defects. From the achieved results, it was possible to obtain a satisfactory characterization of the existing defects.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2023026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The occurrence of defects in solar cells is intrinsically related to a reduction in the efficiency and reliability of these devices. Therefore, monitoring techniques, such as lock-in thermography, electroluminescence and the I-V characteristic curve are adopted in order to evaluate the integrity of the solar cells. In the present work, a novel experimental procedure for the lock-in thermography of solar cells is proposed, aiming to improve the detection capability of the assay. Conventional techniques use pulse width modulation to operate the cell at a fixed point on the I-V curve. Instead, we propose a methodology based on a sinusoidal electric current excitation in order to extend the range of operational points that are close to the maximum power point as the cell operates in the field. Some traditional image processing techniques (principal component analysis, the fast Fourier transform and the four-step phase-shifting method) have been used to analyze the thermal images captured by an infrared camera during steady-state operation mode of the solar cells using both sinusoidal electric current signal and standard pulse width modulation procedures. Comparison between the results of both procedures found that this novel approach provides smoother and clearer delimitation of the defects. Furthermore, the contrast of the phase images was found to exhibit significant changes between the defective and non-defective regions for different modulation frequencies and types of defects. From the achieved results, it was possible to obtain a satisfactory characterization of the existing defects.
一种新的太阳能电池锁定热成像实验方法
太阳能电池中缺陷的发生本质上与这些设备的效率和可靠性的降低有关。因此,为了评估太阳能电池的完整性,采用了锁相热成像、电致发光和I-V特性曲线等监测技术。在本工作中,提出了一种新的太阳能电池锁定热成像实验程序,旨在提高检测能力。传统技术使用脉宽调制在I-V曲线上的固定点操作电池。相反,我们提出了一种基于正弦电流激励的方法,以扩大电池在野外工作时接近最大功率点的工作点范围。采用传统的图像处理技术(主成分分析、快速傅立叶变换和四步移相法),利用正弦电流信号和标准脉宽调制程序对太阳能电池稳态工作模式下红外相机捕获的热图像进行了分析。两种方法的结果比较表明,该方法能更流畅、更清晰地界定缺陷。此外,相位图像的对比发现,在不同的调制频率和缺陷类型下,缺陷区和非缺陷区之间存在显着变化。从获得的结果来看,可以获得现有缺陷的令人满意的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信