Numerical study and optimization of GO/ZnO based perovskite solar cell using SCAPS

IF 1.8 Q4 ENERGY & FUELS
AIMS Energy Pub Date : 2023-01-01 DOI:10.3934/energy.2023034
Norsakinah Johrin, F. Chee, Syafiqa Nasir, P. Y. Moh
{"title":"Numerical study and optimization of GO/ZnO based perovskite solar cell using SCAPS","authors":"Norsakinah Johrin, F. Chee, Syafiqa Nasir, P. Y. Moh","doi":"10.3934/energy.2023034","DOIUrl":null,"url":null,"abstract":"This paper focuses on the numerical study of hybrid organic-inorganic perovskite solar cells. It investigates the incorporation of a graphene oxide (GO) thin layer to enhance solar cell efficiency. The study demonstrates that the GO layer improves interaction with the absorber layer and enhances hole transportation, resulting in reduced recombination and diffusion losses at the absorber and hole transport layer (HTL) interface. The increased energy level of the Lower Unoccupied Molecular Orbital (LUMO) in GO acts as an excellent electron-blocking layer, thereby improving the VOC. The objective is to explore different structures of perovskite solar cells to enhance their performance. The simulated solar cell comprises a GO/FASnI3/TiO2/ZnO/ITO sandwich structure, with FASnI3 and ZnO thicknesses adjusted to improve conversion efficiency. The impact of thickness on device performance, specifically the absorber and electron transport layers, is investigated. The fill factor (FF) changes as the absorber and electron transport layers (ETL) increase. The FF is an important parameter that determines PSC performance since it measures how effectively power is transferred from the cell to an external circuit. The optimized solar cell achieves a short-circuit current density (JSC) of 27.27 mA/cm2, an open-circuit voltage (VOC) of 2.76 V, a fill factor (FF) of 27.05% and the highest power conversion efficiency (PCE) of 20.39% with 400 nm of FASnI3 and 300 nm of ZnO. These findings suggest promising directions for the development of more effective GO-based perovskite solar cells.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2023034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the numerical study of hybrid organic-inorganic perovskite solar cells. It investigates the incorporation of a graphene oxide (GO) thin layer to enhance solar cell efficiency. The study demonstrates that the GO layer improves interaction with the absorber layer and enhances hole transportation, resulting in reduced recombination and diffusion losses at the absorber and hole transport layer (HTL) interface. The increased energy level of the Lower Unoccupied Molecular Orbital (LUMO) in GO acts as an excellent electron-blocking layer, thereby improving the VOC. The objective is to explore different structures of perovskite solar cells to enhance their performance. The simulated solar cell comprises a GO/FASnI3/TiO2/ZnO/ITO sandwich structure, with FASnI3 and ZnO thicknesses adjusted to improve conversion efficiency. The impact of thickness on device performance, specifically the absorber and electron transport layers, is investigated. The fill factor (FF) changes as the absorber and electron transport layers (ETL) increase. The FF is an important parameter that determines PSC performance since it measures how effectively power is transferred from the cell to an external circuit. The optimized solar cell achieves a short-circuit current density (JSC) of 27.27 mA/cm2, an open-circuit voltage (VOC) of 2.76 V, a fill factor (FF) of 27.05% and the highest power conversion efficiency (PCE) of 20.39% with 400 nm of FASnI3 and 300 nm of ZnO. These findings suggest promising directions for the development of more effective GO-based perovskite solar cells.
基于SCAPS的GO/ZnO钙钛矿太阳能电池的数值研究与优化
本文主要对有机-无机钙钛矿混合太阳能电池进行了数值研究。它研究了氧化石墨烯(GO)薄层的掺入以提高太阳能电池的效率。研究表明,氧化石墨烯层改善了与吸收层的相互作用,增强了空穴输运,从而减少了吸收层和空穴输运层(HTL)界面处的复合和扩散损失。氧化石墨烯中较低未占据分子轨道(LUMO)能级的增加作为一个优秀的电子阻挡层,从而提高了VOC。目的是探索钙钛矿太阳能电池的不同结构,以提高其性能。模拟的太阳能电池由GO/FASnI3/TiO2/ZnO/ITO夹层结构组成,通过调整FASnI3和ZnO的厚度来提高转换效率。研究了厚度对器件性能的影响,特别是吸收层和电子传输层。填充因子(FF)随着吸收层和电子传递层(ETL)的增加而变化。FF是决定PSC性能的一个重要参数,因为它测量了从电池到外部电路的功率传输的有效性。优化后的太阳能电池在400 nm的FASnI3和300 nm的ZnO中,短路电流密度(JSC)为27.27 mA/cm2,开路电压(VOC)为2.76 V,填充系数(FF)为27.05%,最高功率转换效率(PCE)为20.39%。这些发现为开发更有效的氧化石墨烯基钙钛矿太阳能电池指明了有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信