A comprehensive review of solar thermal desalination technologies for freshwater production

IF 1.8 Q4 ENERGY & FUELS
AIMS Energy Pub Date : 2023-01-01 DOI:10.3934/energy.2023016
Laveet Kumar, Jahanzaib Soomro, H. Khoharo, M. Assad
{"title":"A comprehensive review of solar thermal desalination technologies for freshwater production","authors":"Laveet Kumar, Jahanzaib Soomro, H. Khoharo, M. Assad","doi":"10.3934/energy.2023016","DOIUrl":null,"url":null,"abstract":"This review is inspired by the increasing shortage of fresh water in areas of the world, and is written in response to the expanding demand for sustainable technologies due to the prevailing crisis of depleting natural water resources. It focuses on comprehending different solar energy-based technologies. Since the increasing population has resulted in the rising demand for freshwater, desalination installation volume is rapidly increasing globally. Conventional ways of desalination technologies involve the use of fossil fuels to extract thermal energy which imparts adverse impacts on the environment. To lessen the carbon footprint left by energy-intensive desalination processes, the emphasis has shifted to using renewable energy sources to drive desalination systems. The growing interest in combining solar energy with desalination with an emphasis on increasing energy efficiency has been sparked by the rapid advancements in solar energy technology, particularly solar thermal. This review paper aims to reflect various developments in solar thermal desalination technologies and presents prospects of solar energy-based desalination techniques. This paper reviews direct and indirect desalination techniques coupled with solar energy, and goes on to explain recent trends in technologies. This review also summarizes the emerging trends in the field of solar thermal desalination technologies. The use of nanoparticles and photo-thermal materials for localized heating in solar desalination systems has decreased energy consumption and enhanced the efficiency of the system. Solar power combined with emerging processes like membrane distillation (MD) has also a recent resurgence.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2023016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

This review is inspired by the increasing shortage of fresh water in areas of the world, and is written in response to the expanding demand for sustainable technologies due to the prevailing crisis of depleting natural water resources. It focuses on comprehending different solar energy-based technologies. Since the increasing population has resulted in the rising demand for freshwater, desalination installation volume is rapidly increasing globally. Conventional ways of desalination technologies involve the use of fossil fuels to extract thermal energy which imparts adverse impacts on the environment. To lessen the carbon footprint left by energy-intensive desalination processes, the emphasis has shifted to using renewable energy sources to drive desalination systems. The growing interest in combining solar energy with desalination with an emphasis on increasing energy efficiency has been sparked by the rapid advancements in solar energy technology, particularly solar thermal. This review paper aims to reflect various developments in solar thermal desalination technologies and presents prospects of solar energy-based desalination techniques. This paper reviews direct and indirect desalination techniques coupled with solar energy, and goes on to explain recent trends in technologies. This review also summarizes the emerging trends in the field of solar thermal desalination technologies. The use of nanoparticles and photo-thermal materials for localized heating in solar desalination systems has decreased energy consumption and enhanced the efficiency of the system. Solar power combined with emerging processes like membrane distillation (MD) has also a recent resurgence.
淡水生产用太阳能热脱盐技术综述
这一审查是受到世界各地淡水日益短缺的启发,并且是针对由于普遍存在的自然水资源枯竭危机而对可持续技术的需求不断扩大而编写的。它侧重于理解不同的太阳能技术。由于人口的增加导致淡水需求的增加,海水淡化装置的数量在全球范围内迅速增加。传统的海水淡化技术包括使用化石燃料提取热能,这对环境有不利影响。为了减少能源密集型海水淡化过程留下的碳足迹,重点已经转移到使用可再生能源来驱动海水淡化系统。由于太阳能技术,特别是太阳能热能的迅速发展,人们对将太阳能与海水淡化结合起来并强调提高能源效率的兴趣日益浓厚。本文综述了太阳能热脱盐技术的研究进展,并对太阳能脱盐技术的发展前景进行了展望。本文综述了与太阳能相结合的直接和间接海水淡化技术,并进一步说明了这些技术的最新发展趋势。综述了太阳能热脱盐技术领域的最新发展趋势。在太阳能海水淡化系统中使用纳米粒子和光热材料进行局部加热,降低了能源消耗,提高了系统效率。太阳能与膜蒸馏(MD)等新兴工艺相结合,最近也重新兴起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信