Revolutionizing Oman's energy network with an optimal mixture renewable energy source

IF 1.8 Q4 ENERGY & FUELS
AIMS Energy Pub Date : 2023-01-01 DOI:10.3934/energy.2023032
Humaid Abdullah ALHinai, A. Mohd Ariffin, Miszina Osman
{"title":"Revolutionizing Oman's energy network with an optimal mixture renewable energy source","authors":"Humaid Abdullah ALHinai, A. Mohd Ariffin, Miszina Osman","doi":"10.3934/energy.2023032","DOIUrl":null,"url":null,"abstract":"The electricity demand has increased to 240% during the last decade in the Sultanate of Oman due to population growth and industrial expansion. Solar energy can act as an alternate source of energy production to meet the surge in demand for electric power. Also, the government has planned to derive 30% of the electricity from renewables by 2030. Moreover, agreements have been made to reduce greenhouse gas (GHG) emissions by decreasing 7% by 2030. The main objective of this paper is to design a grid-connected PV solar system based on the real-time data collected from the location called Nizwa, Oman using Hybrid Optimization of Multiple Electric Renewables (HOMER) software. The real-time data of average high and low temperature, solar radiation, estimated monthly average daily sunshine and peak hours of solar radiation of Nizwa has been collected from Meteorological Office Oman for January to December 2022. Nizwa recorded a temperature max of 43 ℃ during summer and 12 ℃ in January. Daily sun radiation in July averages between 5,500 and 6,000 Wh/m2, and the average sunshine is 9 hours per day at the selected project area (Nizwa). The collected data has been analyzed and designed using HOMER software. HOMER is used to model, optimize and analyze an integrated energy system that primarily utilizes renewable and non-conventional resources for both grid connected and autonomous systems. A 9-kW grid-connected PV solar panel has been designed and implemented in the proposed system. The proposed PV solar system worked perfectly and gave the results of an estimated number of hours of operation to be 4,362 hrs/year; the cost of energy per kilowatt is $ 0.044 and the annual energy saving cost of the hybrid system is $ 173.696. For the environmental feasibility of producing 14,765 kWh/yr, carbon dioxide emissions have decreased from 7,230,440 g to 4,396.001 g, with a difference of 7,226,043.9 g of carbon dioxide.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"42 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2023032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The electricity demand has increased to 240% during the last decade in the Sultanate of Oman due to population growth and industrial expansion. Solar energy can act as an alternate source of energy production to meet the surge in demand for electric power. Also, the government has planned to derive 30% of the electricity from renewables by 2030. Moreover, agreements have been made to reduce greenhouse gas (GHG) emissions by decreasing 7% by 2030. The main objective of this paper is to design a grid-connected PV solar system based on the real-time data collected from the location called Nizwa, Oman using Hybrid Optimization of Multiple Electric Renewables (HOMER) software. The real-time data of average high and low temperature, solar radiation, estimated monthly average daily sunshine and peak hours of solar radiation of Nizwa has been collected from Meteorological Office Oman for January to December 2022. Nizwa recorded a temperature max of 43 ℃ during summer and 12 ℃ in January. Daily sun radiation in July averages between 5,500 and 6,000 Wh/m2, and the average sunshine is 9 hours per day at the selected project area (Nizwa). The collected data has been analyzed and designed using HOMER software. HOMER is used to model, optimize and analyze an integrated energy system that primarily utilizes renewable and non-conventional resources for both grid connected and autonomous systems. A 9-kW grid-connected PV solar panel has been designed and implemented in the proposed system. The proposed PV solar system worked perfectly and gave the results of an estimated number of hours of operation to be 4,362 hrs/year; the cost of energy per kilowatt is $ 0.044 and the annual energy saving cost of the hybrid system is $ 173.696. For the environmental feasibility of producing 14,765 kWh/yr, carbon dioxide emissions have decreased from 7,230,440 g to 4,396.001 g, with a difference of 7,226,043.9 g of carbon dioxide.
革新阿曼的能源网络与最佳的混合可再生能源
在过去十年中,由于人口增长和工业扩张,阿曼苏丹国的电力需求增加了240%。太阳能可以作为能源生产的替代来源,以满足电力需求的激增。此外,政府还计划到2030年将30%的电力来自可再生能源。此外,各国还达成了到2030年将温室气体排放量减少7%的协议。本文的主要目标是利用多种可再生电力混合优化(HOMER)软件,根据从阿曼尼兹瓦地区收集的实时数据,设计一个并网的光伏太阳能系统。阿曼气象局采集了2022年1 - 12月尼兹瓦的平均高低温、太阳辐射、估计月平均日日照和太阳辐射高峰时数的实时数据。尼兹瓦夏季最高气温为43℃,1月份最高气温为12℃。7月日平均太阳辐射量在5500 - 6000 Wh/m2之间,选定项目区(尼兹瓦)平均日照时间为9小时/天。利用HOMER软件对采集到的数据进行分析和设计。HOMER用于建模、优化和分析综合能源系统,该系统主要利用可再生能源和非常规资源,用于并网和自主系统。在该系统中设计并实现了一个9千瓦并网光伏太阳能电池板。所提出的光伏太阳能系统工作完美,并给出了估计的运行小时数为4362小时/年的结果;每千瓦的能源成本为0.044美元,混合动力系统的年节能成本为173.696美元。为了达到14765千瓦时/年的环境可行性,二氧化碳排放量从7,230,440 g减少到4,396.001 g,相差7,226,043.9 g。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信