Stochastic homogenization on perforated domains III–General estimates for stationary ergodic random connected Lipschitz domains

IF 1.2 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
M. Heida
{"title":"Stochastic homogenization on perforated domains III–General estimates for stationary ergodic random connected Lipschitz domains","authors":"M. Heida","doi":"10.3934/nhm.2023062","DOIUrl":null,"url":null,"abstract":"This is Part III of a series on the existence of uniformly bounded extension operators on randomly perforated domains in the context of homogenization theory. Recalling that randomly perforated domains are typically not John and hence extension is possible only from $ W^{1, p} $ to $ W^{1, r} $, $ r < p $, we will show that the existence of such extension operators can be guaranteed if the weighted expectations of four geometric characterizing parameters are bounded: The local Lipschitz constant $ M $, the local inverse Lipschitz radius $ \\delta^{-1} $ resp. $ \\rho^{-1} $, the mesoscopic Voronoi diameter $ {\\mathfrak{d}} $ and the local connectivity radius $ {\\mathscr{R}} $.","PeriodicalId":54732,"journal":{"name":"Networks and Heterogeneous Media","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks and Heterogeneous Media","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/nhm.2023062","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This is Part III of a series on the existence of uniformly bounded extension operators on randomly perforated domains in the context of homogenization theory. Recalling that randomly perforated domains are typically not John and hence extension is possible only from $ W^{1, p} $ to $ W^{1, r} $, $ r < p $, we will show that the existence of such extension operators can be guaranteed if the weighted expectations of four geometric characterizing parameters are bounded: The local Lipschitz constant $ M $, the local inverse Lipschitz radius $ \delta^{-1} $ resp. $ \rho^{-1} $, the mesoscopic Voronoi diameter $ {\mathfrak{d}} $ and the local connectivity radius $ {\mathscr{R}} $.
穿孔区域的随机均匀化iii -平稳遍历随机连通Lipschitz区域的一般估计
本文是关于均匀化理论下随机穿孔区域上一致有界扩展算子的存在性的系列文章的第三部分。回顾随机穿孔区域通常不是John,因此只能从$ W^{1, p} $到$ W^{1, r} $, $ r < p $进行扩展,我们将证明,如果四个几何表征参数的加权期望是有界的:局部Lipschitz常数$ M $,局部逆Lipschitz半径$ \delta^{-1} $ resp,则可以保证这种扩展算子的存在性。$ \rho^{-1} $,介观Voronoi直径$ {\mathfrak{d}} $和局部连通性半径$ {\mathscr{R}} $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Networks and Heterogeneous Media
Networks and Heterogeneous Media 数学-数学跨学科应用
CiteScore
1.80
自引率
0.00%
发文量
32
审稿时长
6-12 weeks
期刊介绍: NHM offers a strong combination of three features: Interdisciplinary character, specific focus, and deep mathematical content. Also, the journal aims to create a link between the discrete and the continuous communities, which distinguishes it from other journals with strong PDE orientation. NHM publishes original contributions of high quality in networks, heterogeneous media and related fields. NHM is thus devoted to research work on complex media arising in mathematical, physical, engineering, socio-economical and bio-medical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信