Iterative learning algorithms for boundary tracing problems of nonlinear fractional diffusion equations

IF 1.2 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jungang Wang, Qingyang Si, Jun Bao, Qian Wang
{"title":"Iterative learning algorithms for boundary tracing problems of nonlinear fractional diffusion equations","authors":"Jungang Wang, Qingyang Si, Jun Bao, Qian Wang","doi":"10.3934/nhm.2023059","DOIUrl":null,"url":null,"abstract":"In this paper, the iterative learning control technique is extended to distributed parameter systems governed by nonlinear fractional diffusion equations. Based on $ P $-type and $ PI^{\\theta} $-type iterative learning control methods, sufficient conditions for the convergences of systems are given. Finally, numerical examples are presented to illustrate the efficiency of the proposed iterative schemes. The numerical results show that the closed-loop iterative learning control scheme converges faster than the open-loop iterative learning control scheme and the $ PI^{\\theta} $-type iterative learning control scheme converges faster than the $ P $-type and the $ PI $-type iterative learning control scheme.","PeriodicalId":54732,"journal":{"name":"Networks and Heterogeneous Media","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks and Heterogeneous Media","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/nhm.2023059","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the iterative learning control technique is extended to distributed parameter systems governed by nonlinear fractional diffusion equations. Based on $ P $-type and $ PI^{\theta} $-type iterative learning control methods, sufficient conditions for the convergences of systems are given. Finally, numerical examples are presented to illustrate the efficiency of the proposed iterative schemes. The numerical results show that the closed-loop iterative learning control scheme converges faster than the open-loop iterative learning control scheme and the $ PI^{\theta} $-type iterative learning control scheme converges faster than the $ P $-type and the $ PI $-type iterative learning control scheme.
非线性分数扩散方程边界跟踪问题的迭代学习算法
本文将迭代学习控制技术推广到由非线性分数扩散方程控制的分布参数系统。基于$ P $型和$ PI^{\theta} $型迭代学习控制方法,给出了系统收敛的充分条件。最后,通过数值算例说明了所提迭代格式的有效性。数值结果表明,闭环迭代学习控制方案收敛速度快于开环迭代学习控制方案,$ PI^{\theta} $型迭代学习控制方案收敛速度快于$ P $型和$ PI $型迭代学习控制方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Networks and Heterogeneous Media
Networks and Heterogeneous Media 数学-数学跨学科应用
CiteScore
1.80
自引率
0.00%
发文量
32
审稿时长
6-12 weeks
期刊介绍: NHM offers a strong combination of three features: Interdisciplinary character, specific focus, and deep mathematical content. Also, the journal aims to create a link between the discrete and the continuous communities, which distinguishes it from other journals with strong PDE orientation. NHM publishes original contributions of high quality in networks, heterogeneous media and related fields. NHM is thus devoted to research work on complex media arising in mathematical, physical, engineering, socio-economical and bio-medical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信