Error estimate of L1-ADI scheme for two-dimensional multi-term time fractional diffusion equation

IF 1.2 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Kexin Li, Hu Chen, Shusen Xie
{"title":"Error estimate of L1-ADI scheme for two-dimensional multi-term time fractional diffusion equation","authors":"Kexin Li, Hu Chen, Shusen Xie","doi":"10.3934/nhm.2023064","DOIUrl":null,"url":null,"abstract":"A two-dimensional multi-term time fractional diffusion equation $ {D}_{t}^{\\mathit{\\boldsymbol{\\alpha}}} u(x, y, t)- \\Delta u(x, y, t) = f(x, y, t) $ is considered in this paper, where $ {D}_{t}^{\\mathit{\\boldsymbol{\\alpha}}} $ is the multi-term time Caputo fractional derivative. To solve the equation numerically, L1 discretisation to each fractional derivative is used on a graded temporal mesh, together with a standard finite difference method for the spatial derivatives on a uniform spatial mesh. We provide a rigorous stability and convergence analysis of a fully discrete L1-ADI scheme for solving the multi-term time fractional diffusion problem. Numerical results show that the error estimate is sharp.","PeriodicalId":54732,"journal":{"name":"Networks and Heterogeneous Media","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks and Heterogeneous Media","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/nhm.2023064","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

A two-dimensional multi-term time fractional diffusion equation $ {D}_{t}^{\mathit{\boldsymbol{\alpha}}} u(x, y, t)- \Delta u(x, y, t) = f(x, y, t) $ is considered in this paper, where $ {D}_{t}^{\mathit{\boldsymbol{\alpha}}} $ is the multi-term time Caputo fractional derivative. To solve the equation numerically, L1 discretisation to each fractional derivative is used on a graded temporal mesh, together with a standard finite difference method for the spatial derivatives on a uniform spatial mesh. We provide a rigorous stability and convergence analysis of a fully discrete L1-ADI scheme for solving the multi-term time fractional diffusion problem. Numerical results show that the error estimate is sharp.
二维多项时间分数扩散方程L1-ADI格式的误差估计
本文考虑二维多项时间分数扩散方程$ {D}_{t}^{\mathit{\boldsymbol{\alpha}}} u(x, y, t)- \Delta u(x, y, t) = f(x, y, t) $,其中$ {D}_{t}^{\mathit{\boldsymbol{\alpha}}} $为多项时间Caputo分数导数。为了在数值上求解方程,在渐变时间网格上对每个分数阶导数使用L1离散化,并在均匀空间网格上对空间导数使用标准有限差分法。我们给出了求解多项时间分数扩散问题的完全离散L1-ADI格式的严格的稳定性和收敛性分析。数值结果表明,该方法的估计误差很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Networks and Heterogeneous Media
Networks and Heterogeneous Media 数学-数学跨学科应用
CiteScore
1.80
自引率
0.00%
发文量
32
审稿时长
6-12 weeks
期刊介绍: NHM offers a strong combination of three features: Interdisciplinary character, specific focus, and deep mathematical content. Also, the journal aims to create a link between the discrete and the continuous communities, which distinguishes it from other journals with strong PDE orientation. NHM publishes original contributions of high quality in networks, heterogeneous media and related fields. NHM is thus devoted to research work on complex media arising in mathematical, physical, engineering, socio-economical and bio-medical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信