Compactness property of the linearized Boltzmann operator for a diatomic single gas model

IF 1.2 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
S. Brull, Marwa Shahine, P. Thieullen
{"title":"Compactness property of the linearized Boltzmann operator for a diatomic single gas model","authors":"S. Brull, Marwa Shahine, P. Thieullen","doi":"10.3934/nhm.2022029","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In the following work, we consider the Boltzmann equation that models a diatomic gas by representing the microscopic internal energy by a continuous variable I. Under some convenient assumptions on the collision cross-section <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\mathcal{B} $\\end{document}</tex-math></inline-formula>, we prove that the linearized Boltzmann operator <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\mathcal{L} $\\end{document}</tex-math></inline-formula> of this model is a Fredholm operator. For this, we write <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\mathcal{L} $\\end{document}</tex-math></inline-formula> as a perturbation of the collision frequency multiplication operator, and we prove that the perturbation operator <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\mathcal{K} $\\end{document}</tex-math></inline-formula> is compact. The result is established after inspecting the kernel form of <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\mathcal{K} $\\end{document}</tex-math></inline-formula> and proving it to be <inline-formula><tex-math id=\"M6\">\\begin{document}$ L^2 $\\end{document}</tex-math></inline-formula> integrable over its domain using elementary arguments.This implies that <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\mathcal{K} $\\end{document}</tex-math></inline-formula> is a Hilbert-Schmidt operator.</p>","PeriodicalId":54732,"journal":{"name":"Networks and Heterogeneous Media","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks and Heterogeneous Media","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/nhm.2022029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 8

Abstract

In the following work, we consider the Boltzmann equation that models a diatomic gas by representing the microscopic internal energy by a continuous variable I. Under some convenient assumptions on the collision cross-section \begin{document}$ \mathcal{B} $\end{document}, we prove that the linearized Boltzmann operator \begin{document}$ \mathcal{L} $\end{document} of this model is a Fredholm operator. For this, we write \begin{document}$ \mathcal{L} $\end{document} as a perturbation of the collision frequency multiplication operator, and we prove that the perturbation operator \begin{document}$ \mathcal{K} $\end{document} is compact. The result is established after inspecting the kernel form of \begin{document}$ \mathcal{K} $\end{document} and proving it to be \begin{document}$ L^2 $\end{document} integrable over its domain using elementary arguments.This implies that \begin{document}$ \mathcal{K} $\end{document} is a Hilbert-Schmidt operator.

双原子单气体模型线性化Boltzmann算子的紧性
In the following work, we consider the Boltzmann equation that models a diatomic gas by representing the microscopic internal energy by a continuous variable I. Under some convenient assumptions on the collision cross-section \begin{document}$ \mathcal{B} $\end{document}, we prove that the linearized Boltzmann operator \begin{document}$ \mathcal{L} $\end{document} of this model is a Fredholm operator. For this, we write \begin{document}$ \mathcal{L} $\end{document} as a perturbation of the collision frequency multiplication operator, and we prove that the perturbation operator \begin{document}$ \mathcal{K} $\end{document} is compact. The result is established after inspecting the kernel form of \begin{document}$ \mathcal{K} $\end{document} and proving it to be \begin{document}$ L^2 $\end{document} integrable over its domain using elementary arguments.This implies that \begin{document}$ \mathcal{K} $\end{document} is a Hilbert-Schmidt operator.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Networks and Heterogeneous Media
Networks and Heterogeneous Media 数学-数学跨学科应用
CiteScore
1.80
自引率
0.00%
发文量
32
审稿时长
6-12 weeks
期刊介绍: NHM offers a strong combination of three features: Interdisciplinary character, specific focus, and deep mathematical content. Also, the journal aims to create a link between the discrete and the continuous communities, which distinguishes it from other journals with strong PDE orientation. NHM publishes original contributions of high quality in networks, heterogeneous media and related fields. NHM is thus devoted to research work on complex media arising in mathematical, physical, engineering, socio-economical and bio-medical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信