Smooth Transonic Flows Around Cones

IF 1.2 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
W. Lien, Yu-Yu Liu, Chen-Chang Peng
{"title":"Smooth Transonic Flows Around Cones","authors":"W. Lien, Yu-Yu Liu, Chen-Chang Peng","doi":"10.3934/nhm.2022028","DOIUrl":null,"url":null,"abstract":"We consider a conical body facing a supersonic stream of air at a uniform velocity. When the opening angle of the obstacle cone is small, the conical shock wave is attached to the vertex. Under the assumption of self-similarity for irrotational motions, the Euler system is transformed into the nonlinear ODE system. We reformulate the problem in a non-dimensional form and analyze the corresponding ODE system. The initial data is given on the obstacle cone and the solution is integrated until the Rankine-Hugoniot condition is satisfied on the shock cone. By applying the fundamental theory of ODE systems and technical estimates, we construct supersonic solutions and also show that no matter how small the opening angle is, a smooth transonic solution always exists as long as the speed of the incoming flow is suitably chosen for this given angle.","PeriodicalId":54732,"journal":{"name":"Networks and Heterogeneous Media","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks and Heterogeneous Media","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/nhm.2022028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a conical body facing a supersonic stream of air at a uniform velocity. When the opening angle of the obstacle cone is small, the conical shock wave is attached to the vertex. Under the assumption of self-similarity for irrotational motions, the Euler system is transformed into the nonlinear ODE system. We reformulate the problem in a non-dimensional form and analyze the corresponding ODE system. The initial data is given on the obstacle cone and the solution is integrated until the Rankine-Hugoniot condition is satisfied on the shock cone. By applying the fundamental theory of ODE systems and technical estimates, we construct supersonic solutions and also show that no matter how small the opening angle is, a smooth transonic solution always exists as long as the speed of the incoming flow is suitably chosen for this given angle.
圆锥体周围的平滑跨音速流
我们考虑一个面对匀速超音速气流的锥形物体。当障碍物锥开口角度较小时,锥形激波附着在障碍物锥顶点。在无旋转运动自相似假设下,将欧拉系统转化为非线性ODE系统。我们用无量纲形式重新表述了这个问题,并分析了相应的ODE系统。在障碍物锥上给出初始数据,积分解,直到激波锥上满足Rankine-Hugoniot条件。通过应用ODE系统的基本理论和技术估计,我们构造了超声速解,并证明了无论开口角有多小,只要在给定的角度下选择合适的来流速度,总是存在一个平滑的跨声速解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Networks and Heterogeneous Media
Networks and Heterogeneous Media 数学-数学跨学科应用
CiteScore
1.80
自引率
0.00%
发文量
32
审稿时长
6-12 weeks
期刊介绍: NHM offers a strong combination of three features: Interdisciplinary character, specific focus, and deep mathematical content. Also, the journal aims to create a link between the discrete and the continuous communities, which distinguishes it from other journals with strong PDE orientation. NHM publishes original contributions of high quality in networks, heterogeneous media and related fields. NHM is thus devoted to research work on complex media arising in mathematical, physical, engineering, socio-economical and bio-medical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信