Investment decisions under uncertainties in geothermal power generation

IF 1.8 Q4 ENERGY & FUELS
AIMS Energy Pub Date : 2022-01-01 DOI:10.3934/energy.2022038
Marmelia P. Dewi, Andri D. Setiawan, Y. Latief, W. Purwanto
{"title":"Investment decisions under uncertainties in geothermal power generation","authors":"Marmelia P. Dewi, Andri D. Setiawan, Y. Latief, W. Purwanto","doi":"10.3934/energy.2022038","DOIUrl":null,"url":null,"abstract":"Geothermal energy is one of the strategies employed by the Indonesian government to meet rising electricity demand. Developing geothermal energy is often characterized by uncertainties and requires sequential decision-making which is divided into four development phases: 1) identification, 2) exploration, 3) exploitation, and 4) engineering, procurement, construction, and commissioning (EPPC) before it can be commercialized. Traditional valuation techniques often produce a negative net present value (NPV), suggesting decision to reject the project's investment plan. This paper investigates the economic viability of a geothermal power generation project using both NPV and real options analysis (ROA). Costs and uncertainties associated with the various development phases as well as the investment structure of geothermal projects are studied. We develop a framework for assessing the impact of four uncertainties using a binomial lattice: capacity factor, electricity price, make-up well-drilling costs, and operation and maintenance (O&M) costs. Secondary data from an Indonesian context geothermal power plant was used. Positive option values were found for the lattice approach compared to negative values found for the common NPV calculation. The result of this study showed the successful outcome of the exploration stage is very critical to determining the continuation of the project. The framework supports decision-makers in evaluating the impact of geothermal power generation projects in the face of uncertainty by providing a rigorous analysis. The movement of the underlying asset's value in the whole project's lifetime will assist the management in deciding on whether to exit or continue.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"44 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2022038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

Abstract

Geothermal energy is one of the strategies employed by the Indonesian government to meet rising electricity demand. Developing geothermal energy is often characterized by uncertainties and requires sequential decision-making which is divided into four development phases: 1) identification, 2) exploration, 3) exploitation, and 4) engineering, procurement, construction, and commissioning (EPPC) before it can be commercialized. Traditional valuation techniques often produce a negative net present value (NPV), suggesting decision to reject the project's investment plan. This paper investigates the economic viability of a geothermal power generation project using both NPV and real options analysis (ROA). Costs and uncertainties associated with the various development phases as well as the investment structure of geothermal projects are studied. We develop a framework for assessing the impact of four uncertainties using a binomial lattice: capacity factor, electricity price, make-up well-drilling costs, and operation and maintenance (O&M) costs. Secondary data from an Indonesian context geothermal power plant was used. Positive option values were found for the lattice approach compared to negative values found for the common NPV calculation. The result of this study showed the successful outcome of the exploration stage is very critical to determining the continuation of the project. The framework supports decision-makers in evaluating the impact of geothermal power generation projects in the face of uncertainty by providing a rigorous analysis. The movement of the underlying asset's value in the whole project's lifetime will assist the management in deciding on whether to exit or continue.
不确定条件下的地热发电投资决策
地热能是印尼政府为满足日益增长的电力需求而采取的战略之一。开发地热能往往具有不确定性,需要连续的决策,分为四个开发阶段:1)识别,2)勘探,3)开发,4)工程,采购,建设和调试(EPPC),然后才能商业化。传统的估值技术通常会产生负的净现值(NPV),这意味着决定拒绝项目的投资计划。本文利用净现值和实物期权分析(ROA)对某地热发电项目的经济可行性进行了研究。研究了不同开发阶段的成本和不确定性以及地热项目的投资结构。我们开发了一个框架,使用二项式格来评估四个不确定因素的影响:容量系数、电价、补充钻井成本、操作和维护(O&M)成本。本研究使用了印度尼西亚地热发电厂的二手数据。与普通NPV计算的负值相比,晶格方法的选项值为正。研究结果表明,勘探阶段的成功结果对决定项目的延续至关重要。该框架通过提供严格的分析,支持决策者在面对不确定性时评估地热发电项目的影响。在整个项目生命周期中,基础资产价值的变动将有助于管理层决定是退出还是继续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信