Gas diffusion layer from Binchotan carbon and its electrochemical properties for supporting electrocatalyst in fuel cell

IF 1.8 Q4 ENERGY & FUELS
AIMS Energy Pub Date : 2022-01-01 DOI:10.3934/energy.2022016
N. Syarif, D. Rohendi, Ade Dwi Nanda, M. Sandi, Delima Sihombing
{"title":"Gas diffusion layer from Binchotan carbon and its electrochemical properties for supporting electrocatalyst in fuel cell","authors":"N. Syarif, D. Rohendi, Ade Dwi Nanda, M. Sandi, Delima Sihombing","doi":"10.3934/energy.2022016","DOIUrl":null,"url":null,"abstract":"The gas diffusion layer (GDL) in the fuel cell has been made from carbon dispersion electrochemically deposited from binchotan. We prepared GDL by spraying the ink on the surface of the conductive paper. The carbon was then characterized by its crystallography, surface functional groups and size by x-ray diffraction (XRD), FT-IR and PSA instrumentations. Cyclic voltammetry and impedance spectroscopy tests were applied to study the GDL electrochemical characters. Buble drop tests were used to obtain contact angles representing the hydrophobicity of the layer. The electrodeposition/oxidation of binchotan derived carbon dispersion has a crystalline phase in its dot structure. According to particle size analysis, carbon dispersion has an average particle size diameter of 176.7 nm, a range of 64.5–655.8 nm, and a polydispersity index was 0.138. The Nyquist plot revealed that the processes in the GDL matrices as the plot consist of two types of structures, i.e., semicircular curves and vertical (sloping) lines. The GDL electrical conductivity of Vulcan and carbon dots were 0.053 and 0.039 mho cm-1. The contact angle between conductive paper and water was 150.27°; between the gas diffusion layer and carbon Vulcan was 123.28°, and between the gas diffusion layer and carbon dispersion was 95.31°. The surface of the GDL with Vulcan is more hydrophobic than that made with carbon dispersion. In other words, the GDL with carbon dispersion is closer to hydrophilic properties. The results show that the carbon can support the gas diffusion layer for hydrophobic and hydrophilic conditions.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2022016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3

Abstract

The gas diffusion layer (GDL) in the fuel cell has been made from carbon dispersion electrochemically deposited from binchotan. We prepared GDL by spraying the ink on the surface of the conductive paper. The carbon was then characterized by its crystallography, surface functional groups and size by x-ray diffraction (XRD), FT-IR and PSA instrumentations. Cyclic voltammetry and impedance spectroscopy tests were applied to study the GDL electrochemical characters. Buble drop tests were used to obtain contact angles representing the hydrophobicity of the layer. The electrodeposition/oxidation of binchotan derived carbon dispersion has a crystalline phase in its dot structure. According to particle size analysis, carbon dispersion has an average particle size diameter of 176.7 nm, a range of 64.5–655.8 nm, and a polydispersity index was 0.138. The Nyquist plot revealed that the processes in the GDL matrices as the plot consist of two types of structures, i.e., semicircular curves and vertical (sloping) lines. The GDL electrical conductivity of Vulcan and carbon dots were 0.053 and 0.039 mho cm-1. The contact angle between conductive paper and water was 150.27°; between the gas diffusion layer and carbon Vulcan was 123.28°, and between the gas diffusion layer and carbon dispersion was 95.31°. The surface of the GDL with Vulcan is more hydrophobic than that made with carbon dispersion. In other words, the GDL with carbon dispersion is closer to hydrophilic properties. The results show that the carbon can support the gas diffusion layer for hydrophobic and hydrophilic conditions.
Binchotan碳气体扩散层及其在燃料电池中支撑电催化剂的电化学性能
用电化学沉积的碳分散体制备了燃料电池中的气体扩散层。我们通过在导电纸表面喷涂油墨来制备GDL。然后用x射线衍射(XRD)、红外光谱(FT-IR)和PSA仪器对碳的晶体学、表面官能团和尺寸进行了表征。采用循环伏安法和阻抗谱法研究了GDL的电化学特性。气泡跌落试验用于获得代表层疏水性的接触角。电沉积/氧化binchotan衍生的碳分散体在其点结构中具有结晶相。根据粒径分析,碳分散体的平均粒径为176.7 nm,分布范围为64.5 ~ 655.8 nm,多分散性指数为0.138。Nyquist图显示,作为图的GDL矩阵中的过程由两种结构组成,即半圆曲线和垂直(倾斜)线。火神点和碳点的GDL电导率分别为0.053和0.039 mho cm-1。导电纸与水的接触角为150.27°;气体扩散层与炭素之间的距离为123.28°,气体扩散层与炭素之间的距离为95.31°。含有Vulcan的GDL表面比含有碳分散体的GDL表面更疏水。换句话说,具有碳分散的GDL更接近亲水性。结果表明,在疏水和亲水条件下,碳均能支撑气体扩散层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信