B. Abdellaoui, K. Biroud, A. Primo, Fernando Soria, Abdelbadie Younes
{"title":"Fractional KPZ equations with fractional gradient term and Hardy potential","authors":"B. Abdellaoui, K. Biroud, A. Primo, Fernando Soria, Abdelbadie Younes","doi":"10.3934/mine.2023042","DOIUrl":null,"url":null,"abstract":"In this work we address the question of existence and non existence of positive solutions to a class of fractional problems with non local gradient term. More precisely, we consider the problem \\begin{document}$ \\left\\{ \\begin{array}{rcll} (-\\Delta )^s u & = &\\lambda \\dfrac{u}{|x|^{2s}}+ (\\mathfrak{F}(u)(x))^p+ \\rho f & \\text{ in } \\Omega,\\\\ u&>&0 & \\text{ in }\\Omega,\\\\ u& = &0 & \\text{ in }(\\mathbb{R}^N\\setminus\\Omega), \\end{array}\\right. $\\end{document} where $ \\Omega\\subset \\mathbb{R}^N $ is a $ C^{1, 1} $ bounded domain, $ N > 2s, \\rho > 0 $, $ 0 < s < 1 $, $ 1 < p < \\infty $ and $ 0 < \\lambda < \\Lambda_{N, s} $, the Hardy constant defined below. We assume that $ f $ is a non-negative function with additional hypotheses. Here $ \\mathfrak{F}(u) $ is a nonlocal \"gradient\" term. In particular, if $ \\mathfrak{F}(u)(x) = |(-\\Delta)^{\\frac s2}u(x)| $, then we are able to show the existence of a critical exponents $ p_{+}(\\lambda, s) $ such that: 1) if $ p > p_{+}(\\lambda, s) $, there is no positive solution, 2) if $ p < p_{+}(\\lambda, s) $, there exists, at least, a positive supersolution solution for suitable data and $ \\rho $ small. Moreover, under additional restriction on $ p $, there exists a solution for general datum $ f $.","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023042","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we address the question of existence and non existence of positive solutions to a class of fractional problems with non local gradient term. More precisely, we consider the problem \begin{document}$ \left\{ \begin{array}{rcll} (-\Delta )^s u & = &\lambda \dfrac{u}{|x|^{2s}}+ (\mathfrak{F}(u)(x))^p+ \rho f & \text{ in } \Omega,\\ u&>&0 & \text{ in }\Omega,\\ u& = &0 & \text{ in }(\mathbb{R}^N\setminus\Omega), \end{array}\right. $\end{document} where $ \Omega\subset \mathbb{R}^N $ is a $ C^{1, 1} $ bounded domain, $ N > 2s, \rho > 0 $, $ 0 < s < 1 $, $ 1 < p < \infty $ and $ 0 < \lambda < \Lambda_{N, s} $, the Hardy constant defined below. We assume that $ f $ is a non-negative function with additional hypotheses. Here $ \mathfrak{F}(u) $ is a nonlocal "gradient" term. In particular, if $ \mathfrak{F}(u)(x) = |(-\Delta)^{\frac s2}u(x)| $, then we are able to show the existence of a critical exponents $ p_{+}(\lambda, s) $ such that: 1) if $ p > p_{+}(\lambda, s) $, there is no positive solution, 2) if $ p < p_{+}(\lambda, s) $, there exists, at least, a positive supersolution solution for suitable data and $ \rho $ small. Moreover, under additional restriction on $ p $, there exists a solution for general datum $ f $.
In this work we address the question of existence and non existence of positive solutions to a class of fractional problems with non local gradient term. More precisely, we consider the problem \begin{document}$ \left\{ \begin{array}{rcll} (-\Delta )^s u & = &\lambda \dfrac{u}{|x|^{2s}}+ (\mathfrak{F}(u)(x))^p+ \rho f & \text{ in } \Omega,\\ u&>&0 & \text{ in }\Omega,\\ u& = &0 & \text{ in }(\mathbb{R}^N\setminus\Omega), \end{array}\right. $\end{document} where $ \Omega\subset \mathbb{R}^N $ is a $ C^{1, 1} $ bounded domain, $ N > 2s, \rho > 0 $, $ 0 < s < 1 $, $ 1 < p < \infty $ and $ 0 < \lambda < \Lambda_{N, s} $, the Hardy constant defined below. We assume that $ f $ is a non-negative function with additional hypotheses. Here $ \mathfrak{F}(u) $ is a nonlocal "gradient" term. In particular, if $ \mathfrak{F}(u)(x) = |(-\Delta)^{\frac s2}u(x)| $, then we are able to show the existence of a critical exponents $ p_{+}(\lambda, s) $ such that: 1) if $ p > p_{+}(\lambda, s) $, there is no positive solution, 2) if $ p < p_{+}(\lambda, s) $, there exists, at least, a positive supersolution solution for suitable data and $ \rho $ small. Moreover, under additional restriction on $ p $, there exists a solution for general datum $ f $.