{"title":"Some comparison results and a partial bang-bang property for two-phases problems in balls","authors":"Idriss Mazari","doi":"10.3934/mine.2023010","DOIUrl":null,"url":null,"abstract":"In this paper, we present two type of contributions to the study of two-phases problems. In such problems, the main focus is on optimising a diffusion function $ a $ under $ L^\\infty $ and $ L^1 $ constraints, this function $ a $ appearing in a diffusive term of the form $ -{{\\nabla}} \\cdot(a{{\\nabla}}) $ in the model, in order to maximise a certain criterion. We provide a parabolic Talenti inequality and a partial bang-bang property in radial geometries for a general class of elliptic optimisation problems: namely, if a radial solution exists, then it must saturate, at almost every point, the $ L^\\infty $ constraints defining the admissible class. This is done using an oscillatory method.","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we present two type of contributions to the study of two-phases problems. In such problems, the main focus is on optimising a diffusion function $ a $ under $ L^\infty $ and $ L^1 $ constraints, this function $ a $ appearing in a diffusive term of the form $ -{{\nabla}} \cdot(a{{\nabla}}) $ in the model, in order to maximise a certain criterion. We provide a parabolic Talenti inequality and a partial bang-bang property in radial geometries for a general class of elliptic optimisation problems: namely, if a radial solution exists, then it must saturate, at almost every point, the $ L^\infty $ constraints defining the admissible class. This is done using an oscillatory method.