{"title":"Tiltrotor Simulations with Coupled Flight Dynamics, State-Space Aeromechanics, and Aeroacoustics","authors":"Umberto Saetti, Batän Buäday","doi":"10.4050/jahs.69.012003","DOIUrl":null,"url":null,"abstract":"This article describes the development, implementation, and validation of a generic tilt-rotor simulation model with coupled flight dynamics, state-variable aeromechanics, and aeroacoustics. A major novelty of this work lies in the integration of the flight dynamics with a state-space free-vortex wake code that adopts a near-wake vortex-lattice model. This way, the flight dynamics are augmented by the vortex wake dynamics so that the coupled flight and wake dynamics are self-contained and inherently linearizable. The model is implemented for a Bell XV-15 tiltrotor and validated against U.S. Army/NASA XV-15 flight-test data and other data in the literature. Flight control design is performed to provide desired stability, performance, and handling-quality properties and to allow for a fully autonomous transition between hover in helicopter mode and high-speed flight in aircraft mode. The simulation model has clear applications in the development and testing of advanced flight control laws, aeromechanics analysis, and the prediction of aerodynamically generated noise in generalized maneuvering flight.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.69.012003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1
Abstract
This article describes the development, implementation, and validation of a generic tilt-rotor simulation model with coupled flight dynamics, state-variable aeromechanics, and aeroacoustics. A major novelty of this work lies in the integration of the flight dynamics with a state-space free-vortex wake code that adopts a near-wake vortex-lattice model. This way, the flight dynamics are augmented by the vortex wake dynamics so that the coupled flight and wake dynamics are self-contained and inherently linearizable. The model is implemented for a Bell XV-15 tiltrotor and validated against U.S. Army/NASA XV-15 flight-test data and other data in the literature. Flight control design is performed to provide desired stability, performance, and handling-quality properties and to allow for a fully autonomous transition between hover in helicopter mode and high-speed flight in aircraft mode. The simulation model has clear applications in the development and testing of advanced flight control laws, aeromechanics analysis, and the prediction of aerodynamically generated noise in generalized maneuvering flight.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine