Ravi T. Lumba, Cheng Chi, A. Datta, Witold J. F. Koning, Natalia Perez Perez, H. Cummings
{"title":"Structural Design and Aeromechanical Analysis of Unconventional Blades for Future Mars Rotorcraft","authors":"Ravi T. Lumba, Cheng Chi, A. Datta, Witold J. F. Koning, Natalia Perez Perez, H. Cummings","doi":"10.4050/jahs.68.042003","DOIUrl":null,"url":null,"abstract":"The structural design of rotor blades with ultra-thin, unconventional airfoils is conducted in support of the NASA Rotor Optimization for the Advancement of Mars eXploration (ROAMX) project. The outer mold line was provided by NASA, and the internal structural design was developed at the University of Maryland using a CAD-based three-dimensional (3D) aeromechanical analysis. The main objectives of this paper are to document the unique aeroelastic behavior encountered due to the low Reynolds number (down to 15K) and high subsonic Mach number (up to 0.95). Four different blade designs are considered, with the pitch axis varied from quarter-chord to midchord to determine the effect of center of gravity (C.G.) offset on natural frequencies, blade deformations, root loads, and 3D stresses. Torsional stability is emphasized for each of the designs - especially important due to the low Lock number on Mars. The designs are first studied in vacuum, and significant reductions in root loads and 3D stresses are achieved by moving the pitch axis closer to midchord to reduce the C.G. offset. Next, the design with the pitch axis at 40% chord is selected for a lifting-line aeromechanical analysis. The blade control load, airloads, deformations, and 3D stresses are studied for steady hover. Dynamic control load and dynamic 3D stresses are studied for unsteady hover. Interesting elastic twist is observed due to the trapeze effect and propeller moment, in turn affecting the spanwise distribution of aerodynamic loads. The dynamic control load is found to increase significantly due to inertial coupling from the C.G. offset. The dynamic stresses also increase but still have factors of safety greater than two for both tensile and compressive stress.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.68.042003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1
Abstract
The structural design of rotor blades with ultra-thin, unconventional airfoils is conducted in support of the NASA Rotor Optimization for the Advancement of Mars eXploration (ROAMX) project. The outer mold line was provided by NASA, and the internal structural design was developed at the University of Maryland using a CAD-based three-dimensional (3D) aeromechanical analysis. The main objectives of this paper are to document the unique aeroelastic behavior encountered due to the low Reynolds number (down to 15K) and high subsonic Mach number (up to 0.95). Four different blade designs are considered, with the pitch axis varied from quarter-chord to midchord to determine the effect of center of gravity (C.G.) offset on natural frequencies, blade deformations, root loads, and 3D stresses. Torsional stability is emphasized for each of the designs - especially important due to the low Lock number on Mars. The designs are first studied in vacuum, and significant reductions in root loads and 3D stresses are achieved by moving the pitch axis closer to midchord to reduce the C.G. offset. Next, the design with the pitch axis at 40% chord is selected for a lifting-line aeromechanical analysis. The blade control load, airloads, deformations, and 3D stresses are studied for steady hover. Dynamic control load and dynamic 3D stresses are studied for unsteady hover. Interesting elastic twist is observed due to the trapeze effect and propeller moment, in turn affecting the spanwise distribution of aerodynamic loads. The dynamic control load is found to increase significantly due to inertial coupling from the C.G. offset. The dynamic stresses also increase but still have factors of safety greater than two for both tensile and compressive stress.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine