Stability analysis of fractional order modelling of social media addiction

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
Pradeep Malik, Deepika
{"title":"Stability analysis of fractional order modelling of social media addiction","authors":"Pradeep Malik, Deepika","doi":"10.3934/mfc.2022040","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this article, we explored the fractional order mathematical modelling of social media addiction. For the fractional order model of social media addiction, the free equilibrium point <inline-formula><tex-math id=\"M1\">\\begin{document}$ E_{0} $\\end{document}</tex-math></inline-formula>, endemic equilibrium point <inline-formula><tex-math id=\"M2\">\\begin{document}$ E_{*} $\\end{document}</tex-math></inline-formula>, and basic reproduction number <inline-formula><tex-math id=\"M3\">\\begin{document}$ R_0 $\\end{document}</tex-math></inline-formula> have been found. We discussed the stability analysis of the order model of social media addiction through the next generation matrix and fractional Routh-Hurwitz criterion. We also explained the fractional order mathematical modelling of social media addiction by applying a highly reliable and efficient scheme known as q-Homotopy Analysis Sumudu Transformation Method (q-HASTM). This technique q-HASTM is the hybrid scheme based on q-HAM and Sumudu transform technique. In the end, the numerical simulation of the fractional order model of social media addiction is also explained by using the generalized Adams-Bashforth-Moulton method.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"6 1","pages":"670-690"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we explored the fractional order mathematical modelling of social media addiction. For the fractional order model of social media addiction, the free equilibrium point \begin{document}$ E_{0} $\end{document}, endemic equilibrium point \begin{document}$ E_{*} $\end{document}, and basic reproduction number \begin{document}$ R_0 $\end{document} have been found. We discussed the stability analysis of the order model of social media addiction through the next generation matrix and fractional Routh-Hurwitz criterion. We also explained the fractional order mathematical modelling of social media addiction by applying a highly reliable and efficient scheme known as q-Homotopy Analysis Sumudu Transformation Method (q-HASTM). This technique q-HASTM is the hybrid scheme based on q-HAM and Sumudu transform technique. In the end, the numerical simulation of the fractional order model of social media addiction is also explained by using the generalized Adams-Bashforth-Moulton method.

社交媒体成瘾分数阶模型的稳定性分析
In this article, we explored the fractional order mathematical modelling of social media addiction. For the fractional order model of social media addiction, the free equilibrium point \begin{document}$ E_{0} $\end{document}, endemic equilibrium point \begin{document}$ E_{*} $\end{document}, and basic reproduction number \begin{document}$ R_0 $\end{document} have been found. We discussed the stability analysis of the order model of social media addiction through the next generation matrix and fractional Routh-Hurwitz criterion. We also explained the fractional order mathematical modelling of social media addiction by applying a highly reliable and efficient scheme known as q-Homotopy Analysis Sumudu Transformation Method (q-HASTM). This technique q-HASTM is the hybrid scheme based on q-HAM and Sumudu transform technique. In the end, the numerical simulation of the fractional order model of social media addiction is also explained by using the generalized Adams-Bashforth-Moulton method.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信