Analysis of Large-Scale Hybrid Aerospace Spur Gear Drivetrains

IF 1.4 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Sean Gauntt, S. McIntyre, R. Campbell
{"title":"Analysis of Large-Scale Hybrid Aerospace Spur Gear Drivetrains","authors":"Sean Gauntt, S. McIntyre, R. Campbell","doi":"10.4050/jahs.68.012004","DOIUrl":null,"url":null,"abstract":"The hybrid gear concept, which combines a metallic outer rim of gear teeth with a composite web, has shown potential to reduce the weight of small-scale spur gears without negatively affecting vibration performance for low- and medium-speed applications. In this paper, the hybrid gear design and tooth microgeometry optimization technique that had been applied to small-scale spur gears was adapted for application to spur gears of aerospace-relevant scale, speed, and load. A single reduction drivetrain model was developed featuring large-scale hybrid spur gears, which was used to determine optimal tooth microgeometry modifications that minimized peak-to-peak transmission error. Static and dynamic transmission error analyses were then performed using the optimal microgeometries. Results were compared to those predicted for a similarly-optimized all-steel drivetrain. The application of optimal tooth microgeometries to large-scale hybrid gears led to a more significant decrease in a peak-to-peak transmission error than was observed for the small-scale gears. Similar to results for small-scale hybrid gears, the drivetrains featuring large-scale hybrid gears predicted similar dynamic transmission errors to their all-steel counterparts at low and medium speeds, while significantly different transmission errors were predicted at high speeds.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.68.012004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The hybrid gear concept, which combines a metallic outer rim of gear teeth with a composite web, has shown potential to reduce the weight of small-scale spur gears without negatively affecting vibration performance for low- and medium-speed applications. In this paper, the hybrid gear design and tooth microgeometry optimization technique that had been applied to small-scale spur gears was adapted for application to spur gears of aerospace-relevant scale, speed, and load. A single reduction drivetrain model was developed featuring large-scale hybrid spur gears, which was used to determine optimal tooth microgeometry modifications that minimized peak-to-peak transmission error. Static and dynamic transmission error analyses were then performed using the optimal microgeometries. Results were compared to those predicted for a similarly-optimized all-steel drivetrain. The application of optimal tooth microgeometries to large-scale hybrid gears led to a more significant decrease in a peak-to-peak transmission error than was observed for the small-scale gears. Similar to results for small-scale hybrid gears, the drivetrains featuring large-scale hybrid gears predicted similar dynamic transmission errors to their all-steel counterparts at low and medium speeds, while significantly different transmission errors were predicted at high speeds.
大型混合动力航空直齿轮传动系统分析
混合齿轮的概念,结合了金属外轮辋的齿轮齿复合腹板,已显示出潜力,以减轻小型正齿轮的重量,而不会对振动性能产生负面影响,为低,中速应用。本文将应用于小型正齿轮的混合齿轮设计和齿形优化技术应用于航空航天相关规模、速度和载荷的正齿轮。建立了一种大型混合直齿正齿轮单级减速传动系统模型,用于确定最优的齿微几何形状修改,以最大限度地减少峰间传动误差。然后使用最优微几何形状进行静态和动态传动误差分析。将结果与类似优化的全钢传动系统的预测结果进行了比较。将最优齿微几何形状应用于大型混合动力齿轮比应用于小型混合动力齿轮更显著地降低了峰间传动误差。与小型混合动力齿轮传动系统的结果类似,采用大型混合动力齿轮传动系统的动力传动系统在低速和中速下的动态传动误差与全钢传动系统相似,而在高速下的预测传动误差则存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Helicopter Society
Journal of the American Helicopter Society 工程技术-工程:宇航
CiteScore
4.10
自引率
33.30%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online. The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信