{"title":"Full-Scale Reynolds Number Testing of Rotor Hub Drag and Wake Turbulence","authors":"D. Reich, M. Krane, S. Willits, S. Schmitz","doi":"10.4050/jahs.67.042008","DOIUrl":null,"url":null,"abstract":"A 1:4.25-scale model of a generic helicopter rotor hub was tested at Reynolds numbers ranging from 1.75 × 106 to 7 × 106 at advance ratio of 0.2 in The Pennsylvania State University Applied Research Laboratory Garfield Thomas 48-inch diameter water tunnel. Measurements including drag and wake characteristics were performed up to full-scale Reynolds number with respect to an industry-representative helicopter rotor hub. In particular, the variation of drag and flow field with Reynolds number was characterized. Load measurements were conducted using an improved load cell design, with greater accuracy than in previous experiments. Wake velocity was measured using laser Doppler velocimetry at two downstream planes, yielding velocity statistics to the second order. Improved load measurement accuracy and wake velocity spatial resolution, at full-scale Reynolds number, provide a unique dataset for computational fluid dynamics validation as part of the Penn State Rotor Hub Flow Prediction Workshops and physical insight into rotor hub flows.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.67.042008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1
Abstract
A 1:4.25-scale model of a generic helicopter rotor hub was tested at Reynolds numbers ranging from 1.75 × 106 to 7 × 106 at advance ratio of 0.2 in The Pennsylvania State University Applied Research Laboratory Garfield Thomas 48-inch diameter water tunnel. Measurements including drag and wake characteristics were performed up to full-scale Reynolds number with respect to an industry-representative helicopter rotor hub. In particular, the variation of drag and flow field with Reynolds number was characterized. Load measurements were conducted using an improved load cell design, with greater accuracy than in previous experiments. Wake velocity was measured using laser Doppler velocimetry at two downstream planes, yielding velocity statistics to the second order. Improved load measurement accuracy and wake velocity spatial resolution, at full-scale Reynolds number, provide a unique dataset for computational fluid dynamics validation as part of the Penn State Rotor Hub Flow Prediction Workshops and physical insight into rotor hub flows.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine