{"title":"Performance and Loads of a Lift Offset Rotor, Part II: Prediction Validations with Measurements","authors":"J. Schmaus, I. Chopra","doi":"10.4050/jahs.67.012004","DOIUrl":null,"url":null,"abstract":"The predictions of an upgraded UMARC comprehensive analysis are compared to experimental lift offset rotor results. The experiments cover a range of collective pitch angles (θ°) from 2° to 10°, advance ratios (μ) from 0.21 to 0.53, and lift offset from 0% to 20%. The experimental model rotors are from a system of coaxial hingeless rotors, with two blades each, and a first flap frequency of approximately 1.6/rev. The simulation is compared with isolated rotor performance and controls with lift offset, loads, and pitch link forces. Increasing efficiency with increasing lift offset, the impact of lift offset on different loads, and the dependence of pitch link loads on pitch bearing damping are identified in the experiment and correlated with the simulation.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4050/jahs.67.012004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The predictions of an upgraded UMARC comprehensive analysis are compared to experimental lift offset rotor results. The experiments cover a range of collective pitch angles (θ°) from 2° to 10°, advance ratios (μ) from 0.21 to 0.53, and lift offset from 0% to 20%. The experimental model rotors are from a system of coaxial hingeless rotors, with two blades each, and a first flap frequency of approximately 1.6/rev. The simulation is compared with isolated rotor performance and controls with lift offset, loads, and pitch link forces. Increasing efficiency with increasing lift offset, the impact of lift offset on different loads, and the dependence of pitch link loads on pitch bearing damping are identified in the experiment and correlated with the simulation.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine