Oil displacement performance of stabilized foam system by SiO_2 nanoparticles

Q3 Earth and Planetary Sciences
Qiang Sun, Zhaomin Li, Songyan Li, N. Zhang, Lei Jiang, Jiqian Wang
{"title":"Oil displacement performance of stabilized foam system by SiO_2 nanoparticles","authors":"Qiang Sun, Zhaomin Li, Songyan Li, N. Zhang, Lei Jiang, Jiqian Wang","doi":"10.3969/J.ISSN.1673-5005.2014.04.018","DOIUrl":null,"url":null,"abstract":"The performances of SiO2+ SDS foam system were investigated by using Warning Blender method,through which the optimum amount of SiO2 nanoparticles was determined. And the influences of temperature and salinity on foam properties were studied as well. The plugging ability,diversion ability,and oil displacement performance for SDS and SiO2+ SDS foam systems were characterized and compared by means of the core displacement experimental facilities. Also the microscopic visualization test was conducted to compare the oil displacement performance of water flooding,SDS and SiO2+ SDS foam systems on the dead-end pores. The results show that SiO2+ SDS foam system is more stable than SDS foam system,which can significantly improve the plugging,diversion,and oil displacement ability. Also the displacement effect for dead-end pores is increased as well.","PeriodicalId":35442,"journal":{"name":"中国石油大学学报(自然科学版)","volume":"38 1","pages":"124-131"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国石油大学学报(自然科学版)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3969/J.ISSN.1673-5005.2014.04.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 3

Abstract

The performances of SiO2+ SDS foam system were investigated by using Warning Blender method,through which the optimum amount of SiO2 nanoparticles was determined. And the influences of temperature and salinity on foam properties were studied as well. The plugging ability,diversion ability,and oil displacement performance for SDS and SiO2+ SDS foam systems were characterized and compared by means of the core displacement experimental facilities. Also the microscopic visualization test was conducted to compare the oil displacement performance of water flooding,SDS and SiO2+ SDS foam systems on the dead-end pores. The results show that SiO2+ SDS foam system is more stable than SDS foam system,which can significantly improve the plugging,diversion,and oil displacement ability. Also the displacement effect for dead-end pores is increased as well.
SiO_2纳米颗粒稳定泡沫体系的驱油性能
采用警告搅拌法研究了SiO2+ SDS泡沫体系的性能,确定了SiO2纳米颗粒的最佳用量。研究了温度和盐度对泡沫性能的影响。通过岩心驱替实验装置,对SDS和SiO2+ SDS泡沫体系的封堵能力、导流能力和驱油性能进行了表征和比较。通过微观可视化试验比较了水驱、SDS和SiO2+ SDS泡沫体系在端孔上的驱油性能。结果表明:SiO2+ SDS泡沫体系比SDS泡沫体系更稳定,能显著提高堵油、导流和驱油能力;同时,对端孔的驱替效果也有所增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
中国石油大学学报(自然科学版)
中国石油大学学报(自然科学版) Engineering-Mechanical Engineering
CiteScore
2.10
自引率
0.00%
发文量
6784
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信