Induction of intelligence into molecules by using spinor radiation: an alternative to water memory

IF 1.1 Q4 BIOPHYSICS
M. Fioranelli, A. Sepehri, Ilyas Khan, P. Rathebe
{"title":"Induction of intelligence into molecules by using spinor radiation: an alternative to water memory","authors":"M. Fioranelli, A. Sepehri, Ilyas Khan, P. Rathebe","doi":"10.3934/biophy.2023016","DOIUrl":null,"url":null,"abstract":"By injecting a string of spinors within a membrane, it becomes sensitive to external magnetic fields. Without external magnetic fields, half of the spinors in this string have opposite spins with respect to the other half and become paired with them within membranes. However, any external magnetic field could have a direct effect on this system because a magnetic field could make all spinors parallel. According to the exclusion principle, parallel spinors repel each other and go away. Consequently, they force the molecular membrane to grow. By removing external fields, this molecule or membrane returns to its initial size. An injected string of spinors could be designed so that this molecule or membrane is sensitive only to some frequencies. Particularly, membranes could be designed to respond to low frequencies below 60 Hz. Even in some conditions, frequencies should be lower than 20 Hz. Higher frequencies may destroy the structure of membranes. Although, by using some more complicated mechanisms, some membranes could be designed to respond to higher frequencies. Thus, a type of intelligence could be induced into a molecule or membrane such that it becomes able to diagnose special frequencies of waves and responses. We tested the model for milk molecules like fat, vesicles, and microbial ones under a 1000x microscope and observed that it works. Thus, this technique could be used to design intelligent drug molecules. Also, this model may give good reasons for observing some signatures of water memory by using the physical properties of spinors.","PeriodicalId":7529,"journal":{"name":"AIMS Biophysics","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/biophy.2023016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

By injecting a string of spinors within a membrane, it becomes sensitive to external magnetic fields. Without external magnetic fields, half of the spinors in this string have opposite spins with respect to the other half and become paired with them within membranes. However, any external magnetic field could have a direct effect on this system because a magnetic field could make all spinors parallel. According to the exclusion principle, parallel spinors repel each other and go away. Consequently, they force the molecular membrane to grow. By removing external fields, this molecule or membrane returns to its initial size. An injected string of spinors could be designed so that this molecule or membrane is sensitive only to some frequencies. Particularly, membranes could be designed to respond to low frequencies below 60 Hz. Even in some conditions, frequencies should be lower than 20 Hz. Higher frequencies may destroy the structure of membranes. Although, by using some more complicated mechanisms, some membranes could be designed to respond to higher frequencies. Thus, a type of intelligence could be induced into a molecule or membrane such that it becomes able to diagnose special frequencies of waves and responses. We tested the model for milk molecules like fat, vesicles, and microbial ones under a 1000x microscope and observed that it works. Thus, this technique could be used to design intelligent drug molecules. Also, this model may give good reasons for observing some signatures of water memory by using the physical properties of spinors.
利用旋光体辐射将智能诱导入分子:水记忆的替代品
通过在薄膜内注入一串旋转体,薄膜对外部磁场变得敏感。在没有外部磁场的情况下,这条弦上一半的自旋体相对于另一半有相反的自旋,并在膜内与它们配对。然而,任何外部磁场都可能对该系统产生直接影响,因为磁场可以使所有旋量平行。根据不相容原理,平行旋体相互排斥并远离。因此,它们迫使分子膜生长。通过移除外场,这个分子或膜恢复到它最初的大小。可以设计一串注入的旋量,使这种分子或膜只对某些频率敏感。特别是,膜可以设计为响应低于60赫兹的低频。即使在某些情况下,频率也应低于20hz。更高的频率可能会破坏膜的结构。虽然,通过使用一些更复杂的机制,一些膜可以被设计成对更高的频率做出反应。因此,一种智能可以被诱导到分子或膜中,这样它就能够诊断特定频率的波和反应。我们在1000倍显微镜下测试了牛奶分子,如脂肪、囊泡和微生物分子,并观察到它是有效的。因此,该技术可用于设计智能药物分子。此外,该模型还为利用旋量的物理性质观察水记忆的一些特征提供了很好的理由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Biophysics
AIMS Biophysics BIOPHYSICS-
CiteScore
2.40
自引率
20.00%
发文量
16
审稿时长
8 weeks
期刊介绍: AIMS Biophysics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of biophysics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Biophysics welcomes, but not limited to, the papers from the following topics: · Structural biology · Biophysical technology · Bioenergetics · Membrane biophysics · Cellular Biophysics · Electrophysiology · Neuro-Biophysics · Biomechanics · Systems biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信