{"title":"Identificação de Áreas de Eucalipto a Partir de Segmentação Espacial e Temporal de Série Temporal Landsat","authors":"D. Ferraz, Raul Sanchez Vicens","doi":"10.36403/espacoaberto.2023.55466","DOIUrl":null,"url":null,"abstract":"A conversão de sistemas naturais em sistemas antropizados vem causando sobrecarga nos ecossistemas e alterações na paisagem. O Brasil é um dos maiores praticantes da silvicultura, mas as informações sobre o setor são bastante conflitantes. É necessário entender como essas mudanças ocorrem e o Sensoriamento Remoto multitemporal emerge como ferramenta de análise. O objetivo do presente trabalho é testar uma metodologia de detecção de áreas de eucalipto utilizando o algoritmo LandTrendr na plataforma Google Earth Engine combinado com análise orientada a objetos a partir da série temporal do satélite Landsat, entre 1985 e 2020, e identificar a idade dos segmentos encontrados utilizando o mesmo. A matriz de confusão mostrou uma acurácia global de 0.990 com o algoritmo Area² e um Kappa de 0.959, apresentando um resultado bastante satisfatório. Já a identificação da moda do primeiro ano de ganho de cada segmento obteve um Kappa de 0.643.","PeriodicalId":31749,"journal":{"name":"Espaco Aberto","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Espaco Aberto","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36403/espacoaberto.2023.55466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A conversão de sistemas naturais em sistemas antropizados vem causando sobrecarga nos ecossistemas e alterações na paisagem. O Brasil é um dos maiores praticantes da silvicultura, mas as informações sobre o setor são bastante conflitantes. É necessário entender como essas mudanças ocorrem e o Sensoriamento Remoto multitemporal emerge como ferramenta de análise. O objetivo do presente trabalho é testar uma metodologia de detecção de áreas de eucalipto utilizando o algoritmo LandTrendr na plataforma Google Earth Engine combinado com análise orientada a objetos a partir da série temporal do satélite Landsat, entre 1985 e 2020, e identificar a idade dos segmentos encontrados utilizando o mesmo. A matriz de confusão mostrou uma acurácia global de 0.990 com o algoritmo Area² e um Kappa de 0.959, apresentando um resultado bastante satisfatório. Já a identificação da moda do primeiro ano de ganho de cada segmento obteve um Kappa de 0.643.