{"title":"Differential Transmission Spectra of Terahertz Metamaterial Resonances for Sensing Microorganisms","authors":"SaeJune Park, Ahn, Yeonghwan","doi":"10.3807/KJOP.2016.27.6.229","DOIUrl":null,"url":null,"abstract":"Metamaterials operating in the terahertz frequency range show promising potential for use in highly sensitive microbial sensors that are capable of effectively detecting microorganisms in the ambient environment. We were able to detect extremely small numbers of microorganisms by measuring the differential transmission spectra (DTS) of the metamaterial resonances. This was possible because their sizes are on the same scale as the microgaps of the terahertz metamaterials. DTS depend critically on the number of microorganisms placed in the gap area, and their dielectric constant. In addition, these metamaterial microbial sensors are reusable, because the microorganisms can be completely removed by fungicide solution. Finite-difference time-domain simulations successfully reproduce our experimental data.","PeriodicalId":42467,"journal":{"name":"Korean Journal of Optics and Photonics","volume":"27 1","pages":"229-232"},"PeriodicalIF":0.1000,"publicationDate":"2016-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Optics and Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3807/KJOP.2016.27.6.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Metamaterials operating in the terahertz frequency range show promising potential for use in highly sensitive microbial sensors that are capable of effectively detecting microorganisms in the ambient environment. We were able to detect extremely small numbers of microorganisms by measuring the differential transmission spectra (DTS) of the metamaterial resonances. This was possible because their sizes are on the same scale as the microgaps of the terahertz metamaterials. DTS depend critically on the number of microorganisms placed in the gap area, and their dielectric constant. In addition, these metamaterial microbial sensors are reusable, because the microorganisms can be completely removed by fungicide solution. Finite-difference time-domain simulations successfully reproduce our experimental data.