The modular Gromov–Hausdorff propinquity

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Frédéric Latrémolière
{"title":"The modular Gromov–Hausdorff propinquity","authors":"Frédéric Latrémolière","doi":"10.4064/dm778-5-2019","DOIUrl":null,"url":null,"abstract":"Motivated by the quest for an analogue of the Gromov-Hausdorff distance in noncommutative geometry which is well-behaved with respect to C*-algebraic structures, we propose a complete metric on the class of Leibniz quantum compact metric spaces, named the dual Gromov-Hausdorff propinquity. This metric resolves several important issues raised by recent research in noncommutative metric geometry: it makes *-isomorphism a necessary condition for distance zero, it is well-adapted to Leibniz seminorms, and — very importantly — is complete, unlike the quantum propinquity which we introduced earlier. Thus our new metric provides a natural tool for noncommutative metric geometry, designed to allow for the generalizations of techniques from metric geometry to C*-algebra theory. Resume: Motives par la quete d’une metrique analogue a la distance de Gromov-Hausdorff pour la geometrie noncommutative et adaptee aux C*-algebres, nous proposons une distance complete sur la classe des espaces metriques compacts quantiques de Leibniz. Cette nouvelle distance, que nous appelons la proximite duale de Gromov-Hausdorff, resout plusieurs problemes importants que la recherche courante en geometrie metrique noncommutative a reveles. En particulier, il est necessaire pour les C*-algebres d’etre isomorphes pour avoir distance zero, et tous les espaces quantiques compacts impliques dans le calcul de la proximite duale sont de type Leibniz. En outre, notre distance est complete. Notre proximite duale de Gromov-Hausdorff est donc un nouvel outil naturel pour le developpement de la geometrie metrique noncommutative.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm778-5-2019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13

Abstract

Motivated by the quest for an analogue of the Gromov-Hausdorff distance in noncommutative geometry which is well-behaved with respect to C*-algebraic structures, we propose a complete metric on the class of Leibniz quantum compact metric spaces, named the dual Gromov-Hausdorff propinquity. This metric resolves several important issues raised by recent research in noncommutative metric geometry: it makes *-isomorphism a necessary condition for distance zero, it is well-adapted to Leibniz seminorms, and — very importantly — is complete, unlike the quantum propinquity which we introduced earlier. Thus our new metric provides a natural tool for noncommutative metric geometry, designed to allow for the generalizations of techniques from metric geometry to C*-algebra theory. Resume: Motives par la quete d’une metrique analogue a la distance de Gromov-Hausdorff pour la geometrie noncommutative et adaptee aux C*-algebres, nous proposons une distance complete sur la classe des espaces metriques compacts quantiques de Leibniz. Cette nouvelle distance, que nous appelons la proximite duale de Gromov-Hausdorff, resout plusieurs problemes importants que la recherche courante en geometrie metrique noncommutative a reveles. En particulier, il est necessaire pour les C*-algebres d’etre isomorphes pour avoir distance zero, et tous les espaces quantiques compacts impliques dans le calcul de la proximite duale sont de type Leibniz. En outre, notre distance est complete. Notre proximite duale de Gromov-Hausdorff est donc un nouvel outil naturel pour le developpement de la geometrie metrique noncommutative.
模块化Gromov-Hausdorff逼近
为了寻找C*-代数结构中非交换几何中Gromov-Hausdorff距离的类似物,我们提出了莱布尼茨量子紧度量空间类上的一个完备度量,命名为对偶Gromov-Hausdorff逼近。这个度量解决了最近在非交换度量几何研究中提出的几个重要问题:它使*-同构成为距离为零的必要条件,它很好地适应莱布尼茨半模,而且非常重要的是,它是完备的,不像我们前面介绍的量子接近性。因此,我们的新度量为非交换度量几何提供了一个自然的工具,旨在允许从度量几何到C*-代数理论的技术推广。回顾:格罗莫夫-豪斯多夫的几何非交换和C*-代数的非交换动机,以及莱布尼茨的空间度量紧致量子化的空间完备类的若干建议。新距离,近似对偶的Gromov-Hausdorff,解决了许多重要的问题,在几何度量的非交换问题上。特别地,在距离为零的情况下,我们需要用C*-代数来表示同构,用两个空间来表示量子化紧致隐式,用莱布尼兹型来表示近似对偶。总之,没有一段路程是完整的。Gromov-Hausdorff近似对偶给出了几何度量非交换的新发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信