Imaginary cone and reflection subgroups of Coxeter groups

IF 1.5 3区 数学 Q1 MATHEMATICS
M. Dyer
{"title":"Imaginary cone and reflection subgroups of Coxeter groups","authors":"M. Dyer","doi":"10.4064/dm773-6-2019","DOIUrl":null,"url":null,"abstract":"The imaginary cone of a Kac-Moody Lie algebra is the convex hull of zero and the positive imaginary roots. This paper studies the imaginary cone for a class of root systems of general Coxeter groups W. It is shown that the imaginary cone of a reflection subgroup of W is contained in that of W, and that for irreducible infinite W of finite rank, the closed imaginary cone is the only non-zero, closed, pointed W-stable cone contained in the pointed cone spanned by the simple roots. For W of finite rank, various natural notions of faces of the imaginary cone are shown to coincide, the face lattice is explicitly described in terms of the lattice of facial reflection subgroups and it is shown that the Tits cone and imaginary cone are related by a duality closely analogous to the standard duality for polyhedral cones, even though neither of them is a closed cone in general. Some of these results have application, to be given in sequels to this paper, to dominance order of Coxeter groups, associated automata, and construction of modules for generic Iwahori-Hecke algebras.","PeriodicalId":51016,"journal":{"name":"Dissertationes Mathematicae","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissertationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm773-6-2019","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

Abstract

The imaginary cone of a Kac-Moody Lie algebra is the convex hull of zero and the positive imaginary roots. This paper studies the imaginary cone for a class of root systems of general Coxeter groups W. It is shown that the imaginary cone of a reflection subgroup of W is contained in that of W, and that for irreducible infinite W of finite rank, the closed imaginary cone is the only non-zero, closed, pointed W-stable cone contained in the pointed cone spanned by the simple roots. For W of finite rank, various natural notions of faces of the imaginary cone are shown to coincide, the face lattice is explicitly described in terms of the lattice of facial reflection subgroups and it is shown that the Tits cone and imaginary cone are related by a duality closely analogous to the standard duality for polyhedral cones, even though neither of them is a closed cone in general. Some of these results have application, to be given in sequels to this paper, to dominance order of Coxeter groups, associated automata, and construction of modules for generic Iwahori-Hecke algebras.
Coxeter群的虚锥子群和反射子群
Kac-Moody李代数的虚锥是零和正虚根的凸包。本文研究了一类一般Coxeter群W的根的虚锥,证明了W的反射子群的虚锥包含在W的虚锥中,并且证明了对于有限秩的不可约无穷W,闭虚锥是单根所张成的尖锥中唯一的非零、闭、尖W稳定锥。对于有限秩的W,证明了虚锥的面的各种自然概念是一致的,面格是用面反射子群的格来明确描述的,并证明了Tits锥和虚锥之间的对偶关系非常类似于多面体锥的标准对偶关系,尽管它们通常都不是闭锥。这些结果中的一些将在后续文章中应用于Coxeter群的优势阶、相关自动机和一般Iwahori-Hecke代数的模的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
8
审稿时长
>12 weeks
期刊介绍: DISSERTATIONES MATHEMATICAE publishes long research papers (preferably 50-100 pages) in any area of mathematics. An important feature of papers accepted for publication should be their utility for a broad readership of specialists in the domain. In particular, the papers should be to some reasonable extent self-contained. The paper version is considered as primary. The following criteria are taken into account in the reviewing procedure: correctness, mathematical level, mathematical novelty, utility for a broad readership of specialists in the domain, language and editorial aspects. The Editors have adopted appropriate procedures to avoid ghostwriting and guest authorship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信