Hardy spaces for ball quasi-Banach function spaces

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Y. Sawano, K. Ho, Dachun Yang, Sibei Yang
{"title":"Hardy spaces for ball quasi-Banach function spaces","authors":"Y. Sawano, K. Ho, Dachun Yang, Sibei Yang","doi":"10.4064/DM750-9-2016","DOIUrl":null,"url":null,"abstract":"This article unifies the theory for Hardy spaces built on Banach lattices on R-n satisfying certain weak conditions on indicator functions of balls. The authors introduce a new family of function spaces, named the ball quasi-Banach function spaces, to define Hardy type spaces. The ones in this article extend classical Hardy spaces and include various known function spaces, for example, Hardy-Lorentz spaces, Hardy-Herz spaces, Hardy-Orlicz spaces, Hardy-Morrey spaces, Musielak-Orlicz-Hardy spaces, variable Hardy spaces and variable Hardy-Morrey spaces. Among them, Hardy-Herz spaces are shown to naturally arise in the context of any function spaces above. The example of Hardy-Morrey spaces shows that the absolute continuity of the quasi-norm is not necessary, which is used to guarantee the density of the set of functions having compact supports in Hardy spaces for ball quasi-Banach function spaces, but the decomposition result on these Hardy-type spaces never requires this absolute continuity of the quasi-norm. Moreover, via assuming that the powered Hardy-Littlewood maximal operator satisfies certain Fefferman-Stein vector-valued maximal inequality as well as it is bounded on the associate space, the atomic characterizations of Hardy type spaces are obtained. Although the results are based on the rather abstract theory of function spaces, they improve and extend the results for Orlicz spaces and Musielak-Orlicz spaces. Moreover, local Hardy type spaces and Hardy type spaces associated with operators in this setting are also studied.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/DM750-9-2016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 110

Abstract

This article unifies the theory for Hardy spaces built on Banach lattices on R-n satisfying certain weak conditions on indicator functions of balls. The authors introduce a new family of function spaces, named the ball quasi-Banach function spaces, to define Hardy type spaces. The ones in this article extend classical Hardy spaces and include various known function spaces, for example, Hardy-Lorentz spaces, Hardy-Herz spaces, Hardy-Orlicz spaces, Hardy-Morrey spaces, Musielak-Orlicz-Hardy spaces, variable Hardy spaces and variable Hardy-Morrey spaces. Among them, Hardy-Herz spaces are shown to naturally arise in the context of any function spaces above. The example of Hardy-Morrey spaces shows that the absolute continuity of the quasi-norm is not necessary, which is used to guarantee the density of the set of functions having compact supports in Hardy spaces for ball quasi-Banach function spaces, but the decomposition result on these Hardy-type spaces never requires this absolute continuity of the quasi-norm. Moreover, via assuming that the powered Hardy-Littlewood maximal operator satisfies certain Fefferman-Stein vector-valued maximal inequality as well as it is bounded on the associate space, the atomic characterizations of Hardy type spaces are obtained. Although the results are based on the rather abstract theory of function spaces, they improve and extend the results for Orlicz spaces and Musielak-Orlicz spaces. Moreover, local Hardy type spaces and Hardy type spaces associated with operators in this setting are also studied.
球拟banach函数空间的Hardy空间
本文统一了建立在R-n上的Banach格上的Hardy空间满足球的指示函数的某些弱条件的理论。引入了一类新的函数空间,称为球拟巴拿赫函数空间,用来定义Hardy型空间。本文扩展了经典Hardy空间,包括各种已知的函数空间,如Hardy- lorentz空间、Hardy- herz空间、Hardy- orlicz空间、Hardy- morrey空间、Musielak-Orlicz-Hardy空间、可变Hardy空间和可变Hardy- morrey空间。其中,Hardy-Herz空间自然出现在上述任何函数空间的上下文中。Hardy- morrey空间的例子表明,为了保证球类banach函数空间Hardy空间中紧支撑函数集的密度,准范数的绝对连续性是不必要的,但是在这些Hardy型空间上的分解结果并不需要准范数的绝对连续性。此外,通过假设幂Hardy- littlewood极大算子满足一定的Fefferman-Stein向量值极大不等式,并且在关联空间上有界,得到了Hardy型空间的原子刻画。虽然这些结果是基于相当抽象的函数空间理论,但它们改进和扩展了Orlicz空间和Musielak-Orlicz空间的结果。此外,我们还研究了局部Hardy型空间以及在这种情况下与算子相关的Hardy型空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信