{"title":"Hardy spaces for ball quasi-Banach function spaces","authors":"Y. Sawano, K. Ho, Dachun Yang, Sibei Yang","doi":"10.4064/DM750-9-2016","DOIUrl":null,"url":null,"abstract":"This article unifies the theory for Hardy spaces built on Banach lattices on R-n satisfying certain weak conditions on indicator functions of balls. The authors introduce a new family of function spaces, named the ball quasi-Banach function spaces, to define Hardy type spaces. The ones in this article extend classical Hardy spaces and include various known function spaces, for example, Hardy-Lorentz spaces, Hardy-Herz spaces, Hardy-Orlicz spaces, Hardy-Morrey spaces, Musielak-Orlicz-Hardy spaces, variable Hardy spaces and variable Hardy-Morrey spaces. Among them, Hardy-Herz spaces are shown to naturally arise in the context of any function spaces above. The example of Hardy-Morrey spaces shows that the absolute continuity of the quasi-norm is not necessary, which is used to guarantee the density of the set of functions having compact supports in Hardy spaces for ball quasi-Banach function spaces, but the decomposition result on these Hardy-type spaces never requires this absolute continuity of the quasi-norm. Moreover, via assuming that the powered Hardy-Littlewood maximal operator satisfies certain Fefferman-Stein vector-valued maximal inequality as well as it is bounded on the associate space, the atomic characterizations of Hardy type spaces are obtained. Although the results are based on the rather abstract theory of function spaces, they improve and extend the results for Orlicz spaces and Musielak-Orlicz spaces. Moreover, local Hardy type spaces and Hardy type spaces associated with operators in this setting are also studied.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/DM750-9-2016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 110
Abstract
This article unifies the theory for Hardy spaces built on Banach lattices on R-n satisfying certain weak conditions on indicator functions of balls. The authors introduce a new family of function spaces, named the ball quasi-Banach function spaces, to define Hardy type spaces. The ones in this article extend classical Hardy spaces and include various known function spaces, for example, Hardy-Lorentz spaces, Hardy-Herz spaces, Hardy-Orlicz spaces, Hardy-Morrey spaces, Musielak-Orlicz-Hardy spaces, variable Hardy spaces and variable Hardy-Morrey spaces. Among them, Hardy-Herz spaces are shown to naturally arise in the context of any function spaces above. The example of Hardy-Morrey spaces shows that the absolute continuity of the quasi-norm is not necessary, which is used to guarantee the density of the set of functions having compact supports in Hardy spaces for ball quasi-Banach function spaces, but the decomposition result on these Hardy-type spaces never requires this absolute continuity of the quasi-norm. Moreover, via assuming that the powered Hardy-Littlewood maximal operator satisfies certain Fefferman-Stein vector-valued maximal inequality as well as it is bounded on the associate space, the atomic characterizations of Hardy type spaces are obtained. Although the results are based on the rather abstract theory of function spaces, they improve and extend the results for Orlicz spaces and Musielak-Orlicz spaces. Moreover, local Hardy type spaces and Hardy type spaces associated with operators in this setting are also studied.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.